Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anthropogenic stresses on the world’s big rivers

An Author Correction to this article was published on 08 January 2019

This article has been updated


The world’s big rivers and their floodplains were central to development of civilization and are now home to c. 2.7 billion people. They are economically vital whilst also constituting some of the most diverse habitats on Earth. However, a number of anthropogenic stressors, including large-scale damming, hydrological change, pollution, introduction of non-native species and sediment mining, challenge their integrity and future, as never before. The rapidity and extent of such change is so great that large-scale, and potentially irreparable, transformations may ensue in periods of years to decades, with ecosystem collapse being possible in some big rivers. Prioritizing the fate of the world’s great river corridors on an international political stage is imperative. Future sustainable management, and establishment of environmental flow requirements for the world’s big rivers, must be supported through co-ordinated international funding, and trans-continental political agreement to monitor these rivers, finance their continual upkeep and help ameliorate increasing anthropogenic pressures. To have any effect, all of these must be set within an inclusive governance framework across scales, organizations and local populace.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2: Sediment yield from the Huang He (Yellow) River.
Fig. 3: Consistency (percentage of all models) in the magnitude of estimated 100-year recurrence interval floods in 2050 from 21 climate models75, showing regions of increased (blue) and decreased (red) flow.
Fig. 4: The spread of non-native species within the River Rhine and other rivers in Europe155.

Data availability

Data and data sources for some of the data discussed in this paper are given in Supplementary Table 1.

Change history

  • 08 January 2019

    In the version of this Review originally published, the author name ‘Arthington’ was misspelt in refs 216 and 218. Further, in the sentence that starts “Global warming has also been linked to potentially significant increases in the flow of Russia’s three great Artic rivers...”, ‘Artic’ should have been ‘Arctic’. These errors have now been corrected.


  1. 1.

    Bianchi, T. S. Deltas and Humans (Oxford Univ. Press, New York, 2016).

  2. 2.

    Singh, A. et al. Counter-intuitive influence of Himalayan river morphodynamics on Indus Civilisation urban settlements. Nat. Commun. 8, 1617 (2017).

    Google Scholar 

  3. 3.

    Macklin, M. G. & Lewin, J. The rivers of civilization. Quat. Sci. Rev. 114, 228–244 (2015).

    Google Scholar 

  4. 4.

    Hasan, F. A. The dynamics of a riverine civilisation: a geoarchaeological perspective on the Nile Valley, Egypt. World Archaeology 29, 51–74 (1997).

    Google Scholar 

  5. 5.

    Doyle, M. The Source: How Rivers Made America and America Remade its Rivers (W. W. Norton, New York, 2018).

  6. 6.

    Immerzeel, W. W., van Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).

    Google Scholar 

  7. 7.

    Gore, J. A. & Shields Jr, F. D. Can large rivers be restored? BioScience 45, 142–152 (1995).

  8. 8.

    Abell, R., Lehner, B., Thieme, M. & Linke, S. Looking beyond the fenceline: assessing protection gaps for the world’s rivers. Conserv. Lett. 10, 384–394 (2017).

    Google Scholar 

  9. 9.

    Transboundary River Basins: Status and Trends (UNEP-DHI, UNEP, TWAP, 2016);

  10. 10.

    Bakker, M. H. N. Transboundary river floods: examining countries, international river basins and continents. Water Policy 11, 269–288 (2009).

    Google Scholar 

  11. 11.

    Sadoff, C. W. & Grey, D. Beyond the river: the benefits of cooperation on international rivers. Water Policy 4, 389–403 (2002).

    Google Scholar 

  12. 12.

    Uitto, J. I. & Duda, A. M. Management of transboundary water resources: lessons from international cooperation for conflict prevention. Geogr. J. 168, 365–378 (2002).

    Google Scholar 

  13. 13.

    Chellaney, B. Coming water wars. The Intl Economy (2009).

  14. 14.

    Dinar, S., Katz, D., De Stefano, L. & Blankespoor, B. Climate change, conflict, and cooperation: global analysis of the effectiveness of international river treaties in addressing water variability. Political Geogr. 45, 55–66 (2015).

    Google Scholar 

  15. 15.

    Link, P. M., Scheffran, J. & Ide, T. Conflict and cooperation in the water-security nexus: a global comparative analysis of river basins under climate change. WIREs Water 3, 495–515 (2016).

    Google Scholar 

  16. 16.

    Petersen-Perlman, J. D., Veilleux, J. C. & Wolf, A. T. International water conflict and cooperation: challenges and opportunities. Wat. Int. 42, 105–120 (2017).

    Google Scholar 

  17. 17.

    De Stefano, L., Petersen-Perlman, J. D., Sproles, E. A., Eynard, J. & Wolf, A. T. Assessment of transboundary river basins for potential hydro-political tensions. Glob. Environ. Change 45, 35–46 (2017).

    Google Scholar 

  18. 18.

    Gernaat, D. E. H. J., Bogaart, P. W., van Vuuren, D. P., Biemans, H. & Niessink, R. High-resolution assessment of global technical and economic hydropower potential. Nat. Energy 2, 821–828 (2017).

    Google Scholar 

  19. 19.

    Hogeboom, R. J., Knook, L. & Hoekstra, A. Y. The blue water footprint of the world’s artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection and recreation. Adv. Wat. Resources 113, 285–294 (2018).

    Google Scholar 

  20. 20.

    Jackson, R. B. et al. Water in a changing world. Ecol. Appl. 11, 1027–1045 (2001).

    Google Scholar 

  21. 21.

    Palmer, M. A. et al. Climate change and the world’s river basins: anticipating management options. Front. Ecol. Environ. 6, 81–89 (2008).

    Google Scholar 

  22. 22.

    Fuller, M. R., Doyle, M. W. & Strayer, D. L. Causes and consequences of habitat fragmentation in river networks. Ann. NY Acad. Sci. 1355, 31–51 (2015).

    Google Scholar 

  23. 23.

    Veilleux, J. C. & Anderson, E. P. 2015 snapshot of water security in the Nile, Mekong and Amazon river basins. Limnol. Oceanogr. Bull. 25, 8–14 (2016).

    Google Scholar 

  24. 24.

    Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).

    Google Scholar 

  25. 25.

    Potter, P. E & Hamblin, W. K. Big Rivers Worldwide (Brigham Young University Geology Studies, Provo, 2005).

  26. 26.

    Gupta, A. Large Rivers: Geomorphology and Management (Wiley and Sons, Chichester, 2007).

  27. 27.

    Ashworth, P. J. & Lewin, J. How do big rivers come to be different? Earth Sci. Rev. 114, 84–107 (2012).

    Google Scholar 

  28. 28.

    Latrubesse, E. M. Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers. Geomorphology 101, 130–145 (2008).

    Google Scholar 

  29. 29.

    Lewin, J. & Ashworth, P. J. Defining large river channel patterns: alluvial exchange and plurality. Geomorphology 215, 83–98 (2014).

    Google Scholar 

  30. 30.

    Alqahtani, F. A., Johnson, H. D., Jackson, C. A.-L. & Som, M. R. B. Nature, origin and evolution of a Late Pleistocene incised valley-fill, Sunda Shelf, Southeast Asia. Sedimentology 62, 1198–1232 (2015).

    Google Scholar 

  31. 31.

    Hoorn, C. et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330, 927–931 (2010).

    Google Scholar 

  32. 32.

    Junk, W. J., Soares, M. G. M. & Bayley, P. B. Freshwater fishes of the Amazon River basin: their biodiversity, fisheries, and habitats. Aquat. Ecosyst. Health Manag. 10, 153–173 (2007).

    Google Scholar 

  33. 33.

    Benone, N. L., Esposito, M. C., Juen, L., Pompeu, P. S. & Montag, L. F. A. Regional controls on physical habitat structure of Amazon streams. River Res. Appl. 33, 766–776 (2017).

    Google Scholar 

  34. 34.

    Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C. & Lazarus, E. D. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nat. Geosci. 7, 899–903 (2014).

    Google Scholar 

  35. 35.

    Sarker, M. H. & Thorne, C. R. in Braided Rivers: Process, Deposits, Ecology and Management (eds Sambrook Smith, G. H. et al.) 289–310 (Blackwell, Oxford, 2006).

  36. 36.

    Gross, M. A global megadam mania. Curr. Biol. 26, R779–R782 (2016).

    Google Scholar 

  37. 37.

    Magilligan, F. J., Snedden, C. S. & Fox, C. A. in The Politics of Fresh Water: Access, Conflict and Identity (eds Ashcraft, C. M. & Mayer, T.) 78–97 (Routledge, London, 2017).

  38. 38.

    Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–171 (2015).

    Google Scholar 

  39. 39.

    Hennig, T. & Magee, D. Comment on ‘An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales’. Environ. Res. Lett. 12, 038001 (2017).

    Google Scholar 

  40. 40.

    Hennig, T. Damming the transnational Ayeyarwady basin. Hydropower and the water-energy nexus. Renew. Sustain. Energy Rev. 65, 1232–1246 (2016).

    Google Scholar 

  41. 41.

    Vörösmarty, C. et al. Anthropogenic sediment retention: major global impact from registered river impoundments. Glob. Planet. Change 39, 169–190 (2003).

    Google Scholar 

  42. 42.

    Kareiva, P. M. Dam choice: analyses for multiple needs. Proc. Natl Acad. Sci. USA 109, 5553–5554 (2012).

    Google Scholar 

  43. 43.

    Veldkamp, T. I. E. et al. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nat. Commun. 8, 15697 (2017).

    Google Scholar 

  44. 44.

    Benchimol, M. & Peres, C. A. Widespread forest vertebrate extinctions induced by a mega hydroelectric dam in lowland Amazonia. PLoS ONE 10, e0129818 (2015).

    Google Scholar 

  45. 45.

    Almeida, R. M., Barros, N., Cole, J. J., Tranvik, L. & Roland, F. Emissions from Amazonian dams. Nat. Clim. Change 3, 1005 (2013).

    Google Scholar 

  46. 46.

    Fearnside, P. Emissions from tropical hydropower and the IPCC. Environ. Sci. Policy 50, 225–239 (2015).

    Google Scholar 

  47. 47.

    Räsänen, T. A., Varis, O., Scherer, L. & Kummu, M. Greenhouse gas emissions of hydropower in the Mekong River basin. Environ. Res. Lett. 13, 034030 (2018).

    Google Scholar 

  48. 48.

    Chen, Y., Syvitski, J. P. M., Gao, S., Overeem, I. & Kettner, A. J. Socio-economic impacts on flooding: a 4000-year history of the Yellow River, China. Ambio 41, 682–698 (2012).

    Google Scholar 

  49. 49.

    Chen, Y., Overeem, I., Kettner, A. J., Gao, S. & Syvitski, J. P. M. Modeling flood dynamics along the superelevated channel belt of the Yellow River over the last 3000 years. J. Geophys. Res. Earth Surf. 120, 1321–1351 (2015).

    Google Scholar 

  50. 50.

    Chen, Y. et al. Balancing green and grain trade. Nat. Geosci. 8, 739–741 (2015).

    Google Scholar 

  51. 51.

    Walling, D. E. The changing sediment load of the world’s rivers and implications for land-ocean sediment fluxes. In Proc. Int. Hydraulic Engineering Symposium Aachen (IWASA) (Aachen, Denmark, 2015);

  52. 52.

    Zhao, G. et al. Sediment yield reduction associated with land use changes and check dams in a catchment of the Loess Plateau, China. Catena 148, 126–137 (2017).

    Google Scholar 

  53. 53.

    Kong, D. et al. Environmental impact assessments of the Xiaolangdi Reservoir on the most hyperconcentrated river, Yellow River, China. Environ. Sci. Pollut. Res. 24, 4337–4352 (2017).

    Google Scholar 

  54. 54.

    Wang, S. et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 9, 38–41 (2016).

    Google Scholar 

  55. 55.

    Li, Y., Chang, J., Tu, H. & Wang, X. Impact of the Sanmenxia and Xiaolangdi reservoirs operation on the hydrologic regime of the Lower Yellow River. J. Hydrologic Eng. 21, 06015015 (2016).

    Google Scholar 

  56. 56.

    Bi, N., Wang, H. & Yang, Z. Recent changes in the erosion-accretion patterns of the active Huanghe (Yellow River) delta lobe caused by human activities. Cont. Shelf Res. 90, 70–78 (2014).

    Google Scholar 

  57. 57.

    Wu, X. et al. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976–2013): dominant roles of riverine discharge and sediment grain size. Geomorphology 292, 115–127 (2017).

    Google Scholar 

  58. 58.

    Li, X., Chen, H., Jiang, X., Yu, Z. & Yao, Q. Impacts of human activities on nutrient transport in the Yellow River: the role of the Water-Sediment Regulation Scheme. Sci. Total Environ. 592, 161–170 (2017).

    Google Scholar 

  59. 59.

    Swinkels, L. H. et al. Suspended sediment causes annual acute fish mortality in the Pilcomayo River (Bolivia). Hydrol. Process. 28, 8–15 (2014).

    Google Scholar 

  60. 60.

    Baoligao, B., Xu, F., Chen, X., Wang, X. & Chen, W. Acute impacts of reservoir flushing on fishes in the Yellow River. J. Hydro-Environ. Res. 13, 26–35 (2016).

    Google Scholar 

  61. 61.

    Ansar, A., Flyvbjerg, B., Budzier, A. & Lunn, D. Should we build more large dams? The actual costs of hydropower megaproject development. Energy Policy 69, 43–56 (2014).

    Google Scholar 

  62. 62.

    Awojobi, O. & Jenkins, G. P. Were the hydro dams financed by the World Bank from 1976 to 2005 worthwhile? Energy Policy 86, 222–232 (2015).

    Google Scholar 

  63. 63.

    Mei, X. et al. Modulation of extreme flood levels by impoundment significantly offset by floodplain loss downstream of the Three Gorges Dam. Geophys. Res. Lett. 45, 3147–3155 (2018).

    Google Scholar 

  64. 64.

    Fearnside, P. M. Tropical dams: to build or not to build? Science 351, 456–457 (2016).

    Google Scholar 

  65. 65.

    Fearnside, P. M. Belo Monte: actors and arguments in the struggle over Brazil’s most controversial Amazonian dam. Die Erde J. Geographical Soc. Berlin 148, 14–26 (2017).

    Google Scholar 

  66. 66.

    Skinner, J. & Haas, L. Watered Down? A Review of Social and Environmental Safeguards for Large Dam Projects Natural Resource Issues No. 28. (International Institute for Environment and Development, London, 2014).

  67. 67.

    Siciliano, G., Urban, F., Kim, S. & Lonn, P. D. Hydropower, social priorities and the rural-urban development divide: the case of large dams in Cambodia. Energy Policy 86, 273–285 (2015).

    Google Scholar 

  68. 68.

    Anderson, E. P. & Veilleux, J. C. Cultural costs of tropical dams. Science 352, 159 (2016).

    Google Scholar 

  69. 69.

    Bellmore, J. R. et al. Status and trends of dam removal research in the United States. WIREs Water 4, e1164 (2017).

    Google Scholar 

  70. 70.

    Hart, D. D. et al. Dam removal: challenges and opportunities for ecological research and river restoration. BioScience 52, 669–681 (2002).

    Google Scholar 

  71. 71.

    Miao, C., Borthwick, A. G. L., Liu, H. & Liu, J. China’s policy on dams at the crossroads: removal or further construction? Water 7, 2349–2357 (2015).

    Google Scholar 

  72. 72.

    Agoramoorthy, G. The future of India’s obsolete dams: time to review their safety and structural integrity. Futures 67, 22–25 (2015).

    Google Scholar 

  73. 73.

    Wisser, D., Frolking, S., Hagen, S. & Bierkens, M. F. P. Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs. Wat. Resour. Res. 49, 5732–5739 (2013).

    Google Scholar 

  74. 74.

    Grill, G. et al. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ. Res. Lett. 10, 015001 (2015).

    Google Scholar 

  75. 75.

    Arnell, N. W. & Gosling, S. N. The impacts of climate change on river flood risk at the global scale. Clim. Change 134, 387–401 (2016).

    Google Scholar 

  76. 76.

    Eisner, S. et al. An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins. Clim. Change 141, 401–417 (2017).

    Google Scholar 

  77. 77.

    Winsemius, H. C. et al. Global drivers of future river flood risk. Nat. Clim. Change 6, 381–385 (2016).

    Google Scholar 

  78. 78.

    Alfieri, L. et al. Global projections of river flood risk in a warmer world. Earth’s Future 5, 171–182 (2017).

    Google Scholar 

  79. 79.

    Hirabayashi, Y. et al. Global flood risk under climate change. Nat. Clim. Change 3, 816–821 (2013).

    Google Scholar 

  80. 80.

    Lehner, B., Döll, P., Alcamo, J., Henrichs, T. & Kaspar, F. Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis. Clim. Change 75, 273–299 (2006).

    Google Scholar 

  81. 81.

    Hirabayashi, Y. & Kanae, S. First estimate of the future global population at risk of flooding. Hydrological Res. Lett. 3, 6–9 (2009).

    Google Scholar 

  82. 82.

    Blöschl, G. et al. Changing climate shifts timing of European floods. Science 357, 588–590 (2017).

    Google Scholar 

  83. 83.

    Slater, L. J. & Wilby, R. L. Measuring the changing pulse of rivers. Science 357, 552 (2017).

    Google Scholar 

  84. 84.

    Milly, P. C. D. et al. Stationarity is dead: whither water management? Science 319, 573–574 (2008).

    Google Scholar 

  85. 85.

    Milly, P. C. D. et al. On critiques of “Stationarity is dead: whither water management?”. Wat. Resour. Res. 51, 7785–7789 (2015).

    Google Scholar 

  86. 86.

    Bandyopadhyay, J. Securing the Himalayas as the water tower of Asia: an environmental perspective. Asia Policy 16, 45–50 (2013).

    Google Scholar 

  87. 87.

    Bookhagen, B. & Burbank, D. W. Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. 115, F03019 (2010).

    Google Scholar 

  88. 88.

    Darby, S. E. et al. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity. Nature 539, 276–279 (2016).

    Google Scholar 

  89. 89.

    Redmond, G., Hodges, K. I., Mcsweeney, C., Jones, R. & Hein, D. Projected changes in tropical cyclones over Vietnam and the South China Sea using a 25 km regional climate model perturbed physics ensemble. Clim. Dyn. 45, 1983–2000 (2015).

    Google Scholar 

  90. 90.

    Chapman, A. & Darby, S. E. Evaluating sustainable adaptation strategies for vulnerable mega-deltas using system dynamics modelling: rice agriculture in the Mekong Delta’s An Giang Province, Vietnam. Sci. Total Environ. 559, 326–338 (2016).

    Google Scholar 

  91. 91.

    Schmitt, R. J. P., Rubin, Z. & Kondolf, G. M. Losing ground – scenarios of land loss as consequence of shifting sediment budgets in the Mekong Delta. Geomorphology 294, 58–69 (2017).

    Google Scholar 

  92. 92.

    Arias, M. E. et al. Impacts of hydropower and climate change of drivers of ecological productivity of Southeast Asia’s most important wetland. Ecol. Modell. 272, 252–263 (2014).

    Google Scholar 

  93. 93.

    Ward, P. J. et al. Strong influence of El Niño Southern Oscillation on flood risk around the world. Proc. Natl Acad. Sci. USA 111, 15659–15664 (2014).

    Google Scholar 

  94. 94.

    Cai, W. et al. Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Change 5, 132–137 (2015).

    Google Scholar 

  95. 95.

    Ng, J. Y., Turner, S. W. D. & Galelli, S. Influence of El Niño Southern Oscillation on hydropower production. Environ. Res. Lett. 12, 034010 (2017).

    Google Scholar 

  96. 96.

    Dacre, H. F., Clark, P. A., Martinez-Alvarado, O., Stringer, M. A. & Lavers, D. A. How do atmospheric rivers form? Bull. Am. Meteorol. Soc. 96, 1243–1255 (2015).

    Google Scholar 

  97. 97.

    Lavers, D. A. & Villarini, G. The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett. 40, 3259–3264 (2013).

    Google Scholar 

  98. 98.

    Waliser, D. & Guan, B. Extreme winds and precipitation during landfall of atmospheric rivers. Nat. Geosci. 10, 179–183 (2017).

    Google Scholar 

  99. 99.

    Paltan, H. et al. Global floods and water availability driven by atmospheric rivers. Geophys. Res. Lett. 44, 10387–10395 (2017).

    Google Scholar 

  100. 100.

    Ye, B., Yang, D. & Kane, D. L. Changes in Lena River streamflow hydrology: human impacts versus natural variations. Wat. Resour. Res. 39, 1200 (2003).

    Google Scholar 

  101. 101.

    Smith, L. C., Pavelsky, T. M., MacDonald, G. M., Shiklomanov, A. I. & Lammers, R. B. Rising minimum daily flows in northern Eurasian rivers: a growing influence of groundwater in the high-latitude hydrologic cycle. J. Geophys. Res. 112, G04S47 (2007).

    Google Scholar 

  102. 102.

    McClelland, J. W., Holmes, R. M. & Peterson, B. J. Increasing river discharge in the Eurasian Artic: consideration of dams, permafrost thaw, and fires as potential agents of change. J. Geophys. Res. 109, D18102 (2004).

    Google Scholar 

  103. 103.

    Anisimov, O., Vandenberghe, J., Lobanov, V. & Kondratiev, A. Predicting changes in alluvial channel patterns in North-European Russia under conditions of global warming. Geomorphology 98, 262–274 (2008).

    Google Scholar 

  104. 104.

    Syvitski, J. P. M., Overeem, I., Brakenridge, R. & Hannon, M. Floods, floodplains, delta plains — a satellite imaging approach. Sedim. Geol. 267–268, 1–14 (2012).

    Google Scholar 

  105. 105.

    Lewin, J. & Ashworth, P. J. The negative relief of large river floodplains. Earth Sci. Rev. 129, 1–23 (2014).

    Google Scholar 

  106. 106.

    Lewin, J., Ashworth, P. J. & Strick, R. J. P. Spillage sedimentation on large river floodplains. Earth Surf. Process. Landf. 42, 290–305 (2017).

    Google Scholar 

  107. 107.

    Bayley, P. B. Understanding large river-floodplain ecosystems. BioScience 45, 153–158 (1995).

    Google Scholar 

  108. 108.

    Tockner, K., Schiemer, F. & Ward, J. V. Conservation by restoration: the management concept for a river-floodplain system on the Danube River in Austria. Aquat. Conserv. 8, 71–86 (1998).

    Google Scholar 

  109. 109.

    Tockner, K., Pusch, M., Borchardt, D. & Lorang, M. S. Multiple stressors in coupled river-floodplain environments. Freshwat. Biol. 55(Suppl. 1), 135–151 (2010).

    Google Scholar 

  110. 110.

    Junk, W. J. et al. Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 5–22 (2014).

    Google Scholar 

  111. 111.

    Opperman, J. J., Moyle, P. B., Larsen, E. W., Florsheim, J. L. & Manfree, A. D. Floodplains: Process and Management for Ecosystem Services (Univ. California Press, Oakland, 2017).

  112. 112.

    D’Elia, A. H., Liles, G. C., Viers, J. H. & Smart, D. R. Deep carbon storage potential of buried floodplain soils. Sci. Rep. 7, 8181 (2017).

    Google Scholar 

  113. 113.

    Blakey, R. V., Kingsford, R. T., Law, B. S. & Stoklosa, J. Floodplain habitat is disproportionately important for bats in a large river basin. Biol. Conserv. 215, 1–17 (2017).

    Google Scholar 

  114. 114.

    Schiemer, F., Baumgartner, C. & Tockner, K. Restoration of floodplain rivers: the ‘Danube Restoration Project’. Regul. Riv. Res. Manag. 15, 231–244 (1999).

    Google Scholar 

  115. 115.

    Shared Waters – Joint Responsibilities ICPDR Annual Report 2015 (International Commission for the Protection of the Danube River, 2015).

  116. 116.

    Das, P. & Tamminga, K. R. The Ganges and the GAP: an assessment of efforts to clean a sacred river. Sustainability 4, 1647–1668 (2012).

    Google Scholar 

  117. 117.

    Singh, S. K. & Rai, J. P. N. Pollution studies on River Ganga in Allahabad District. Poll. Res. 22, 469–472 (2003).

    Google Scholar 

  118. 118.

    Mishra, A. Assessment of water quality using principal component analysis: a case study of the River Ganges. J. Wat. Chem. Technol. 32, 227–234 (2010).

    Google Scholar 

  119. 119.

    Birol, E. & Das, S. Estimating the value of improved wastewater treatment: the case of River Ganga, India. J. Environ. Manage. 91, 2163–2171 (2010).

    Google Scholar 

  120. 120.

    Samanta, S. Metal and pesticide pollution scenario in Ganga River system. Aquat. Ecosyst. Health Manage. 16, 454–464 (2013).

    Google Scholar 

  121. 121.

    Mallet, V. River of Life, River of Death: The Ganges and India’s Future (Oxford Univ. Press, Oxford, 2017).

  122. 122.

    Kumar, D. River Ganges – historical, cultural and socioeconomic attributes. Aquat. Ecosys. Health Manage. 20, 8–20 (2017).

    Google Scholar 

  123. 123.

    Tyagi, V. K. et al. Impairment in water quality of Ganges River and consequential health risks on account of mass ritualistic bathing. Desalin. Water Treat. 51, 2121–2129 (2013).

    Google Scholar 

  124. 124.

    Vortmann, M., Balsari, S., Holman, S. R. & Greenough, P. G. Water, sanitation, and hygiene at the world’s largest mass gathering. Curr. Infect. Dis. Rep. 17, 5 (2015).

    Google Scholar 

  125. 125.

    Lechner, A. et al. The Danube so colourful: a potpourri of plastic litter outnumbers fish larvae in Europe’s second largest river. Environ. Poll. 188, 177–182 (2014).

    Google Scholar 

  126. 126.

    Eerkes-Medrano, D., Thompson, R. C. & Aldridge, D. C. Microplastics in freshwater systems: a review of emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 75, 63–82 (2015).

    Google Scholar 

  127. 127.

    Mani, T., Hauk, A., Walter, U. & Burkhardt-Holm, P. Microplastics along the Rhine River. Sci. Rep. 5, 17988 (2015).

    Google Scholar 

  128. 128.

    Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 586, 127–141 (2017).

    Google Scholar 

  129. 129.

    Schmidt, C., Krauth, T. & Wagner, S. Export of plastic debris by rivers into the sea. Environ. Sci. Technol. 51, 12246–12253 (2017).

    Google Scholar 

  130. 130.

    Siegfried, M., Koelmans, A. A., Besseling, E. & Kroeze, C. Export of microplastics from land to sea. A modelling approach. Water Res. 127, 249–257 (2017).

    Google Scholar 

  131. 131.

    Hurley, R., Woodward, J. & Rothwell, J. J. Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nat. Geosci. 11, 251–257 (2018).

    Google Scholar 

  132. 132.

    Lebreton, L. C. M. et al. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017).

    Google Scholar 

  133. 133.

    Van Vliet, M. T. H. et al. Coupled daily streamflow and water temperature modelling in large river basins. Hydrol. Earth Syst. Sci. 156, 4303–4321 (2012).

    Google Scholar 

  134. 134.

    Van Vliet, M. T. H. et al. Global river discharge and water temperature under climate change. Glob. Environ. Change 23, 450–464 (2013).

    Google Scholar 

  135. 135.

    Caissie, D. The thermal regime of rivers: a review. Freshwat. Biol. 51, 1389–1406 (2006).

    Google Scholar 

  136. 136.

    Gupta, J. & ven der Zaag, P. Interbasin water transfers and integrated water resources management: where engineering, science and politics interlock. Phys. Chem. Earth 33, 28–40 (2008).

    Google Scholar 

  137. 137.

    Pittock, J., Meng, J.-h, Geiger, M. & Chapagain, A. K. Interbasin Water Transfers and Water Security in a Changing World: A Solution or a Pipedream? WWF Discussion Paper (WWF Frankfurt, 2009).

  138. 138.

    Webber, M., Crow-Miller, B. & Rogers, S. The South–North water transfer project: remaking the geography of China. Reg. Stud. 51, 370–382 (2017).

    Google Scholar 

  139. 139.

    Fairless, D. Muddy waters. Nature 452, 278–281 (2008).

    Google Scholar 

  140. 140.

    Pandya, A. B. Interlinking of rivers. Water Energy Int. 69, 26–34 (2012).

    Google Scholar 

  141. 141.

    Mehta, D. & Mehta, N. K. Interlinking of rivers in India: issues and challenges. Geo-Eco-Marina 19, 137–143 (2013).

    Google Scholar 

  142. 142.

    Agoramoorthy, G. India’s river interlinking project: will it benefit or backfire? Curr. Sci. 107, 951 (2014).

    Google Scholar 

  143. 143.

    Bagla, P. Indian plans the grandest of canal networks. Science 345, 128 (2014).

    Google Scholar 

  144. 144.

    Verdhen, A. Intra and inter basin linking of rivers in water resources management. J. Sci. Appl. Res. 75, 150–155 (2016).

    Google Scholar 

  145. 145.

    Roman, P. The São Francisco water transfer in Brazil: tribulations of a megaproject through constraints and controversy. Water Alternatives 10, 395–419 (2017).

    Google Scholar 

  146. 146.

    Gain, A. K. & Giupponi, C. Impact of the Farakka Dam on thresholds of the hydrologic flow regime in the lower Ganges River Basin (Bangladesh). Water 6, 2501–2518 (2014).

    Google Scholar 

  147. 147.

    Mukherjee, B. & Saha, U. D. Teesta barrage project — a brief review of unattained goals and associated changes. Int. J. Sci. Res. 5, 2027–2032 (2016).

    Google Scholar 

  148. 148.

    Lakra, W. S., Sarkar, U. K., Dubey, V. K., Sani, R. & Pandey, A. River inter linking in India: status, issues, projects and implications on aquatic ecosystems and freshwater fish diversity. Rev. Fish Biol. Fisheries 21, 463–479 (2011).

    Google Scholar 

  149. 149.

    Arfanuzzaman, Md & Ahmad, Q. Assessing the regional food insecurity in Bangladesh due to irrigation water shortage in the Teesta catchment. Water Policy 18, 304–317 (2016).

    Google Scholar 

  150. 150.

    Graefe, O. River basins as new environmental regions? The depolitization of water management. Procedia Soc. Behav. Sci. 14, 24–27 (2011).

    Google Scholar 

  151. 151.

    Wada, Y., van Beek, L. P. H., Wanders, N. & Bierkens, M. F. P. Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett. 8, 034036 (2013).

    Google Scholar 

  152. 152.

    Strayer, D. L. Twenty years of Zebra mussels: lessons from the mollusc that made headlines. Front. Eco. Environ. 7, 135–141 (2009).

    Google Scholar 

  153. 153.

    Hinterthuer, A. The explosive spread of Asian carp. BioScience 62, 220–224 (2012).

    Google Scholar 

  154. 154.

    Bernauer, D. & Jansen, W. Recent invasions of alien macroinvertebrates and loss of native species in the upper Rhine river, Germany. Aquat. Invasions 1, 55–71 (2006).

    Google Scholar 

  155. 155.

    Leuven, R. S. E. W. et al. The River Rhine: a global highway for dispersal of aquatic invasive species. Biol. Invasions 11, 1989–2008 (2009).

    Google Scholar 

  156. 156.

    Asian Carp Action Plan (ACRCC, 2017);

  157. 157.

    Parker, A. D. et al. Fish distribution, abundance, and behavioral interactions within a large electric dispersal barrier designed to prevent Asian carp movement. Can. J. Fish. Aquat. Sci. 73, 1060–1071 (2016).

    Google Scholar 

  158. 158.

    Rahel, F. J. & Olden, J. D. Assessing the effects of climate change on aquatic invasive species. Conserv. Biol. 22, 521–533 (2008).

    Google Scholar 

  159. 159.

    Stromberg, J. C., Chew, M. K., Nagler, P. L. & Glenn, E. P. Changing perceptions of change: the role of scientists in Tamarix and river management. Restor. Ecol. 17, 177–186 (2009).

    Google Scholar 

  160. 160.

    Hoeinghaus, D. J. in Encyclopedia of the Anthropocene Vol. 3 (eds DellaSalla, D. A. & Goldstein, M. J.) 241–248 (Elsevier, Amsterdam, 2018).

  161. 161.

    Dynesius, M. & Nilsson, C. Fragmentation and flow regulation of river systems in the northern third of the world. Science 266, 753–762 (1994).

    Google Scholar 

  162. 162.

    Nilsson, C., Reidy, C. A., Dynesius, M. & Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 308, 405–408 (2005).

    Google Scholar 

  163. 163.

    Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).

    Google Scholar 

  164. 164.

    Grill, G. et al. Development of new indicators to evaluate river fragmentation and flow regulation at large scales: a case study for the Mekong River Basin. Ecol Indic. 45, 148–159 (2014).

    Google Scholar 

  165. 165.

    Sosnowski, A., Ghoneim, E., Burke, J. J., Hines, E. & Halls, J. Remote regions, remote data: a spatial investigation of precipitation, dynamic land covers, and conflict in the Sudd wetland of South Sudan. Appl. Geogr. 69, 59–64 (2016).

    Google Scholar 

  166. 166.

    Hamilton, S. Potential effects of a major navigation project (Paraguay–Paraná Hidrovía) on inundation in the Pantanal floodplains. Regul. Rivers: Res. Manage. 15, 289–299 (1999).

    Google Scholar 

  167. 167.

    Gottgens, J. F. et al. The Paraguay-Paraná Hidrovía: protecting the Pantanal with lessons from the past. BioScience 51, 301–308 (2001).

    Google Scholar 

  168. 168.

    Junk, W. J. & de Cunha, C. N. Pantanal: a large South American wetland at a crossroads. Ecol. Eng. 24, 391–401 (2005).

    Google Scholar 

  169. 169.

    Torres, A., Brandt, J., Lear, K. & Liu, J. A looming tragedy of the sand commons. Science 357, 970–971 (2017).

    Google Scholar 

  170. 170.

    Lu, X. X., Zhang, S. R., Xie, S. P. & Ma, P. K. Rapid incision of the lower Pearl River (China) since the 1990s as a consequence of sediment depletion. Hydrol. Earth Syst. Sci. 11, 1897–1906 (2007).

    Google Scholar 

  171. 171.

    Xiqing, C., Qiaoju, Z. & Erfeng, Z. In-channel sand extraction from the mid-lower Yangtze channels and its management: problems and challenges. J. Environ. Plan. Manage. 49, 309–320 (2006).

    Google Scholar 

  172. 172.

    Kondolf, G. M. et al. Changing sediment budget of the Mekong: cumulative threats and management strategies for a large river basin. Sci. Total Environ. 625, 114–134 (2018).

    Google Scholar 

  173. 173.

    Bravard, J.-P., Goichot, M. & Gaillot, S. Geography of sand and gravel mining in the lower Mekong River. EchoGéo 26, 13659 (2013).

    Google Scholar 

  174. 174.

    Brunier, G., Anthony, E. J., Goichot, M., Provonsal, M. & Dussouillez, P. Recent morphological changes in the Mekong and Bassac river channels, Mekong Delta: the marked impact of river-bed mining and implications for delta destabilisation. Geomorphology 224, 177–191 (2014).

    Google Scholar 

  175. 175.

    Best, J. L., Ashworth, P. J., Sarker, M. H. & Roden, J. E. in Large Rivers: Geomorphology and Management (ed. Gupta, A.) 395–430 (Wiley and Sons, Chichester, 2007).

  176. 176.

    Sarker, M. H., Huque, I. & Lam, M. Rivers, chars and char dwellers of Bangladesh. Int. J. River Basin Manage. 1, 61–80 (2003).

    Google Scholar 

  177. 177.

    Sarker, M. H., Thorne, C. R., Aktar, M. N. & Ferdous, M. R. Morpho-dynamics of the Brahmaputra–Jamuna River, Bangladesh. Geomorphology 215, 45–59 (2014).

    Google Scholar 

  178. 178.

    Baki, A. B. M. & Gan, T. Y. Riverbank migration and island dynamics of the braided Jamuna River of the Ganges–Brahmaputra basin using multi-spectral Landsat images. Quat. Int. 263, 148–161 (2012).

    Google Scholar 

  179. 179.

    Sarker, M. H., Akter, J. & Ferdaous, M. R. River bank protection measures in the Brahmaputra-Jamuna River: Bangladesh experience. In Proc. Int. Conf. River, Society and Environment (Dibrugarh University, India, 2011);

  180. 180.

    Oberhagemann, K. & Hossain, M. M. Geotextile bag revetments for large rivers in Bangladesh. Geotext. Geomembr. 29, 202–214 (2010).

    Google Scholar 

  181. 181.

    Feldman, D. L. Water Politics: Governing Our Most Precious Resource (Polity Press, Cambridge, 2017).

  182. 182.

    Myint, T. Governing International Rivers: Polycentric Politics in the Mekong and the Rhine (Edward Elgar, Cheltenham, 2012).

  183. 183.

    Campbell, I. C. Integrated management of large river and their basins. Ecohydrol. Hydrobiol. 16, 203–214 (2016).

    Google Scholar 

  184. 184.

    De Stefano, L. et al. Climate change and the institutional resilience of international river basins. J. Peace Res. 49, 193–29 (2012).

    Google Scholar 

  185. 185.

    Garrick, D. et al. Managing hydroclimatic risks in federal rivers: a diagnostic assessment. Phil. Trans. R. Soc. A 371, 20120415 (2013).

    Google Scholar 

  186. 186.

    Wang, Y., Mukherjje, M., Wu, D. & Wu, X. Combating river pollution in China and India: policy measures and governance challenges. Water Policy 18, 122–137 (2016).

    Google Scholar 

  187. 187.

    Liu, J. & Yang, W. Water sustainability for China and beyond. Science 337, 649–650 (2016).

    Google Scholar 

  188. 188.

    Yang, H., Flower, R. J. & Thompson, J. R. Sustaining China’s water resources. Science 339, 141 (2013).

    Google Scholar 

  189. 189.

    Metawie, A. F. History of co-operation in the Nile Basin. Wat. Resour. Dev. 20, 47–63 (2004).

    Google Scholar 

  190. 190.

    Nicol, A. & Cascão, A. E. Against the flow – new power dynamics and upstream mobilisation in the Nile Basin. Proc. Afr. Politic. Econ. 38, 317–325 (2011).

    Google Scholar 

  191. 191.

    Demin, A. P. Distribution of water resources: a case study of the transboundary Nile River. Geogr. Nat. Resour. 36, 198–205 (2015).

    Google Scholar 

  192. 192.

    Hebteyes, B. C., El-bardisy, H. A. E. H., Amer, S. A., Schneider, V. R. & Ward, F. A. Mutually beneficial and sustainable management of Ethiopian and Egyptian dams in the Nile Basin. J. Hydrol. 529, 1235–1246 (2015).

    Google Scholar 

  193. 193.

    Tawfik, R. Reconsidering counter-hegemonic dam projects: the case of the Grand Ethiopian Renaissance Dam. Water Policy 18, 1033–1052 (2016).

    Google Scholar 

  194. 194.

    Barnes, J. The future of the Nile: climate change, land use, infrastructure management, and treaty negotiations in a transboundary river basin. WIREs Clim. Change 8, e449 (2017).

    Google Scholar 

  195. 195.

    Menga, F. Hydropolis: reinterpreting the polis in water politics. Polit. Geogr. 60, 100–109 (2017).

    Google Scholar 

  196. 196.

    Taye, M. T., Tadesse, T., Senay, G. B. & Block, P. The Grand Ethiopian Renaissance Dam: source of cooperation or conflict? J. Wat. Resour. Plan. Manage. 142, 02516001–1 (2016).

    Google Scholar 

  197. 197.

    The ‘water war’ brewing over the new River Nile dam. BBC News (24 February 2018).

  198. 198.

    El-Nashar, W. Y. & Elyamany, A. H. Managing risks of the Grand Ethiopian Renaissance Dam on Egypt. Ain Shams Eng. J. (2017).

  199. 199.

    Gleason, C. J., Garambois, P. A. & Durand, M. T. Tracking river flows from space. EOS 99, 32–36 (2018).

    Google Scholar 

  200. 200.

    Li, Q., Zhong, B., Luo, Z. & Yao, C. GRACE-based estimates of water discharge over the Yellow River basin. Geodesy Geodynam. 7, 187–193 (2016).

    Google Scholar 

  201. 201.

    Wang, S., Zhou, F. & Russell, H. A. J. Estimating snow mass and peak river flows for the Mackenzie River basin using GRACE satellite observations. Remote Sens. 9, 9030256 (2017).

  202. 202.

    Alfieri, L. et al. A global network for operational flood risk reduction. Environ. Sci. Policy 84, 149–158 (2018).

    Google Scholar 

  203. 203.

    Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).

    Google Scholar 

  204. 204.

    Blancamaria, S., Lettenmaier, D. P. & Pavelsky, T. M. The SWOT Mission and its capabilities for land hydrology. Surv. Geophys. 37, 307–337 (2016).

    Google Scholar 

  205. 205.

    Park, E. & Latrubesse, E. M. Modeling suspended sediment distribution patterns of the Amazon River using MODIS data. Remote Sensing Environ. 147, 232–242 (2014).

    Google Scholar 

  206. 206.

    Legleiter, C. J. Calibrating remotely sensed river bathymetry in the absence of field measurements: Flow REsistance Equation-Based Imaging of River Depths (FREEBIRD). Water Resour. Res. 51, 2865–2884 (2015).

    Google Scholar 

  207. 207.

    Cohen, S., Kettner, A. J., Syvitski, J. P. M. & Fekete, B. M. WBMsed, a distributed global-scale riverine sediment flux model: model description and validation. Comp. Geosci. 53, 80–93 (2013).

    Google Scholar 

  208. 208.

    Cohen, S., Kettner, A. J. & Syvitski, J. P. M. Global suspended sediment and water discharge dynamics between 1960 and 2010: continental trends and intra-basin sensitivity. Glob. Planet. Change 115, 44–58 (2014).

    Google Scholar 

  209. 209.

    Maavara, T. et al. Global phosphorus retention by river damming. Proc. Natl Acad. Sci. USA 51, 15603–15608 (2015).

    Google Scholar 

  210. 210.

    Li, M. et al. The carbon flux of global rivers: a re-evaluation of amount and spatial patterns. Ecol. Indic. 80, 40–51 (2017).

    Google Scholar 

  211. 211.

    Nicholas, A. P. Morphodynamic diversity of the world’s largest rivers. Geology 41, 475–478 (2013).

    Google Scholar 

  212. 212.

    Schuurman, F., Marra, W. A. & Kleinhans, M. G. Physics-based modeling of large braided sand-bed rivers: bar pattern formation, dynamics, and sensitivity. J. Geophys. Res. Earth Surf. 118, 2509–2527 (2013).

    Google Scholar 

  213. 213.

    Gleason, C. J. & Hamdam, A. N. Crossing the (watershed) divide: satellite data and the changing politics of international river basins. Geogr. J. 183, 2–15 (2017).

    Google Scholar 

  214. 214.

    Kondolf, M., Rubin, Z. K. & Minear, J. T. Dams on the Mekong: cumulative sediment starvation. Water Resour. Res. 50, 5158–5169 (2014).

    Google Scholar 

  215. 215.

    Tharme, R. E. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 19, 397–441 (2003).

    Google Scholar 

  216. 216.

    Arthington, A. H., Bunn, S. E., Poff, N. L. & Naiman, R. J. The challenge of providing environmental flow rules to sustain river ecosystems. Ecol. Appl. 16, 1311–1318 (2006).

    Google Scholar 

  217. 217.

    Poff, N. L. et al. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwat. Biol. 55, 147–170 (2010).

    Google Scholar 

  218. 218.

    Arthington, A. H. Environmental Flows: Saving Rivers in the Third Millennium. (Univ. California Press, Berkeley, 2012).

  219. 219.

    Acreman, M. et al. Environmental flows for natural, hybrid, and novel riverine ecosystems in a changing world. Front. Ecol. Environ. 12, 466–473 (2014).

    Google Scholar 

  220. 220.

    Acreman, M. et al. The changing role of ecohydrological science in guiding environmental flows. Hydrological Sci. J. 59, 433–450 (2014).

    Google Scholar 

  221. 221.

    Acreman, M. Environmental flows—basics for novices. WIREs Water 3, 622–628 (2016).

    Google Scholar 

  222. 222.

    The Brisbane Declaration (2007) (International River Foundation, accessed 27 November 2018);

  223. 223.

    Poff, N. L. et al. The natural flow regime: a paradigm for river conservation and restoration. BioScience 47, 769–784 (1997).

    Google Scholar 

  224. 224.

    Poff, N. L. & Schmidt, J. C. How dams can go with the flow. Science 353, 1099–1110 (2016).

    Google Scholar 

  225. 225.

    Poff, N. L. & Olden, J. D. Can dams be designed for sustainability? Science 358, 1252–1253 (2017).

    Google Scholar 

  226. 226.

    Sabo, J. L. et al. Designing river flows to improve food security futures in the Lower Mekong Basin. Science 358, eaao1053 (2017).

    Google Scholar 

  227. 227.

    Halls, A. S. & Moyle, P. B. Comment on “Designing river flows to improve food security futures in the Lower Mekong Basin”. Science 361, eaat1225 (2018).

    Google Scholar 

  228. 228.

    Williams, J. G. Comment on “Designing river flows to improve food security futures in the Lower Mekong Basin”. Science 361, eaat1989 (2018).

    Google Scholar 

  229. 229.

    Holtgrieve, G. W. et al. Response to comments on “Designing river flows to improve food security futures in the Lower Mekong Basin”. Science 361, eaat1477 (2018).

    Google Scholar 

  230. 230.

    Shenton, W., Bond, N. R., Yen, J. D. L. & Nally, R. M. Putting the “ecology” into environmental flows: ecological dynamics and demographic modelling. Environ. Manage. 50, 1–10 (2012).

    Google Scholar 

  231. 231.

    Jian, S. K. & Kumar, P. Environmental flows in India: towards sustainable water management. Hydrological Sci. J. 59, 751–769 (2014).

    Google Scholar 

  232. 232.

    Pahl-Wostl, C. et al. Environmental flows and water governance: managing sustainable water uses. Curr. Opin. Environ. Sustainability 5, 341–351 (2013).

    Google Scholar 

  233. 233.

    Leopold, L. B. A reverence for rivers. Geology 5, 429–430 (1977).

    Google Scholar 

  234. 234.

    Vienna Declaration on the Status and Future of the World’s Large Rivers (World’s Large Rivers Conferences, 2011);

  235. 235.

    Latrubesse, E. M. et al. Damming the rivers of the Amazon Basin. Nature 546, 363–369 (2017).

    Google Scholar 

  236. 236.

    Forsberg, B. R. et al. The potential impact of new Amazon dams on Amazon fluvial ecosystems. PLoS ONE 12, e0182254 (2017).

    Google Scholar 

  237. 237.

    Anderson, E. P. et al. Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 4, eaao1642 (2018).

    Google Scholar 

  238. 238.

    Misra, A. K. et al. Proposed river-linking project of India: a boon or bane to nature. Environ. Geol. 51, 1361–1376 (2007).

    Google Scholar 

  239. 239.

    Verma, S., Kampman, D. A., van der Zaag, P. & Hoekstra, A. Y. Going against the flow: a critical analysis of inter-state virtual water trade in the context of India’s National River Linking Program. Phys. Chem. Earth 34, 261–269 (2009).

    Google Scholar 

  240. 240.

    Jain, S. K. Water resource management in India. Curr. Sci. 13, 1211–1212 (2017).

    Google Scholar 

  241. 241.

    Grant, E. H. C. et al. Interbasin water transfer, riverine connectivity, and spatial controls on fish biodiversity. PLoS ONE 7, e34170 (2012).

    Google Scholar 

  242. 242.

    Higgins, S., Overeem, I., Rogers, K. & Kalina, E. River linking in India: downstream impacts on water discharge and suspended sediment transport to deltas. Elem. Sci. Anth. 6, 20 (2018).

    Google Scholar 

  243. 243.

    Fan, H., He, D. & Wang, H. Environmental consequences of damming the mainstream Lancang-Mekong Review: a review. Earth Sci. Rev. 146, 77–91 (2015).

    Google Scholar 

  244. 244.

    Räsänan, T. et al. Observed river discharge changes due to hydropower operations in the Upper Mekong Basin. J. Hydrology 545, (28–41 (2017).

    Google Scholar 

  245. 245.

    Grumbine, R. E. & Xu, J. Mekong hydropower development. Science 332, 177–179 (2011).

    Google Scholar 

  246. 246.

    Requiem for a river. The Economist (11 February 2016).

  247. 247.

    Kummu, M. & Sarkkula, J. Impact of the Mekong River flow alteration on the Tonle Sap flood pulse. Ambio 37, 185–192 (2008).

    Google Scholar 

  248. 248.

    Chapman, A., Darby, S. E., Hông, H. M., Tompkins, E. L. & Van, T. P. D. Adaptation and development trade-offs: fluvial sediment deposition and the sustainability of rice-cropping in the An Giang Province, Mekong Delta. Clim. Change 137, 593–608 (2016).

    Google Scholar 

  249. 249.

    Barnett, J., Rogers, S., Webber, M., Finlayson, B. & Wang, M. Transfer project cannot meet China’s water needs. Nature 527, 295–297 (2015).

    Google Scholar 

  250. 250.

    Milliman, J. D. & Farnsworth, K. L. River Discharge to the Coastal Ocean: A Global Synthesis (Cambridge Univ. Press, Cambridge, 2011).

    Google Scholar 

  251. 251.

    Volga: Russia’s National River (WWF, accessed 25 November 2018);

  252. 252.

    Murray-Darling Basin Physical Information (Australian Government Bureau of Meteorology, accessed 10 January 2018);

  253. 253.

    Górski, K. et al. Post-damming flow regime development in a large lowland river (Volga, Russian Federation): implications for floodplain inundation and fisheries. River Res. Appl. 28, 1121–1134 (2012).

    Google Scholar 

  254. 254.

    Stolf, R., De, S., Piedada, S. M., Da Silva, J. R., Da Sliva, L. C. F. & Maniero, M. A. Water transfer from São Francisco river to semiarid northeast of Brazil: technical data, environmental impacts, survey of opinion about the amount to be transferred. Engenharia Agrícola Jaboticabal 32, 998–1010 (2012).

    Google Scholar 

  255. 255.

    Syvitski, J. P. M., Cohen, S., Kettner, A. J. & Brackenridge, G. R. How important and different are tropical rivers? An overview. Geomorphology 227, 5–17 (2014).

    Google Scholar 

  256. 256.

    O’Connor, J. E. & Costa, J. E. The World’s Largest Floods, Past and Present—Their Causes and Magnitudes U.S. Geological Survey Circular 1254 (USGS, 2004).

  257. 257.

    Orfeo, O. & Steveaux, J. Hydraulic and morphological characteristics of middle and upper reaches of the Paraná River (Argentina and Brazil). Geomorphology 44, 309–322 (2002).

    Google Scholar 

  258. 258.

    Chowdhury, M. R. An assessment of flood forecasting in Bangladesh: the experience of the 1998 flood. Nat. Hazards 22, 139–169 (2000).

    Google Scholar 

  259. 259.

    Zhu, Y. et al. Flood simulations and uncertainty analysis for the Pearl River basin using the coupled land surface and hydrological model system. Water 9, 9060391 (2017).

    Google Scholar 

  260. 260.

    Simmance, A. Environmental Flows for the Ayeyarwady (Irrawaddy) River Basin, Myanmar (UNESCO-IHE Online Course on Environmental Flows, 2013).

  261. 261.

    Higgins, A., Restrepo, J. C., Ortiz, J. C., Pierini, J. & Otero, L. Suspended sediment transport in the Magdalena River (Columbia, South America): hydrologic regime, rating parameters and effective discharge variability. Int. J. Sediment Res. 31, 25–35 (2016).

    Google Scholar 

  262. 262.

    Pinter, N., van der Ploeg, R. R., Schweigart, P. & Hoefer, G. Flood magnification in the River Rhine. Hydrol. Process. 20, 147–164 (2006).

    Google Scholar 

  263. 263.

    Revenga, C., Murray, S., Abramovitz, J. & Hammond, A. Watersheds of the World: Ecological Value and Vulnerability (World Resources Institute, Washington D.C., 1998).

    Google Scholar 

Download references


I am indebted to C. Simpson for his exceptional graphical and database skills that were essential in preparing the figures, and I am very grateful for the provision of papers, figures and data from their own research by N. Arnell, P. Glennie, Y. Hirabayashi, D. Hoeinghaus, E. Latrubesse, H. Paltan and C. Zarfl.

I am also truly indebted to my colleagues who I have been incredibly fortunate to work with over many years, and who have provided considerable insights into, and opportunities to study, some of the world’s largest rivers. Writing of this paper was aided by a Diamond Jubilee International Visiting Fellowship at the University of Southampton, UK, and its publication has been supported by the Jack and Richard Threet Chair in Sedimentary Geology at the University of Illinois, USA.

Author information



Corresponding author

Correspondence to Jim Best.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Figures and Discussion.

Supplementary Data

Data summary for world’s biggest rivers.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Best, J. Anthropogenic stresses on the world’s big rivers. Nature Geosci 12, 7–21 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing