Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing

Abstract

Siberian Traps flood basalt magmatism coincided with the end-Permian mass extinction approximately 252 million years ago. Proposed links between magmatism and ecological catastrophe include global warming, global cooling, ozone depletion and changes in ocean chemistry. However, the critical combinations of environmental changes responsible for global mass extinction are undetermined. In particular, the combined and competing climate effects of sulfur and carbon outgassing remain to be quantified. Here we present results from global climate model simulations of flood basalt outgassing that account for sulfur chemistry and aerosol microphysics with coupled atmosphere and ocean circulation. We consider the effects of sulfur and carbon in isolation and in tandem. We find that coupling with the ocean strongly influences the climate response to prolonged flood basalt-scale outgassing. We suggest that sulfur and carbon emissions from the Siberian Traps combined to generate systemic swings in temperature, ocean circulation and hydrology within a longer-term trend towards a greenhouse world in the early Triassic.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Outgassing scenarios and changes in global surface temperature and ocean circulation.
Fig. 2: CO2 and SO2 cause competing effects on surface temperatures and hydrology.
Fig. 3: Summary of end-Permian proxy data and comparison with model results.
Fig. 4: Conceptual illustration of how combined flood basalt sulfur and magmatic and crustal carbon emissions cause repeated climate swings.

Data availability

Model outputs used to generate Figs. 13 have been archived at PANGAEA (https://doi.pangaea.de/10.1594/PANGAEA.894969). Proxy data are available from the original sources as cited in the text.

References

  1. 1.

    Joachimski, M. M. et al. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40, 195–198 (2012).

    Google Scholar 

  2. 2.

    Cui, Y., Kump, L. R. & Ridgwell, A. Initial assessment of the carbon emission rate and climatic consequences during the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 389, 128–136 (2013).

    Google Scholar 

  3. 3.

    Sun, Y. et al. Lethally hot temperatures during the Early Triassic greenhouse. Science 338, 366–370 (2012).

    Google Scholar 

  4. 4.

    Chen, J. et al. High-resolution SIMS oxygen isotope analysis on conodont apatite from South China and implications for the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 448, 26–38 (2016).

    Google Scholar 

  5. 5.

    Burgess, S. D., Bowring, S. & Shen, S. High-precision timeline for Earth’s most severe extinction. Proc. Natl Acad. Sci. USA 111, 3316–3321 (2014).

    Google Scholar 

  6. 6.

    Song, H. et al. Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic. Earth. Planet. Sci. Lett. 424, 140–147 (2015).

    Google Scholar 

  7. 7.

    Dudás, F.Ö., Yuan, D., Shen, S. & Bowring, S. A. A conodont-based revision of the 87Sr/86Sr seawater curve across the Permian-Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 470, 40–53 (2017).

    Google Scholar 

  8. 8.

    Payne, J. L. & Clapham, M. E. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annu. Rev. Earth. Planet. Sci. 40, 89–111 (2012).

    Google Scholar 

  9. 9.

    Clarkson, M. O. et al. Ocean acidification and the Permo-Triassic mass extinction. Science 348, 229–232 (2015).

    Google Scholar 

  10. 10.

    Courtillot, V. E. & Renne, P. R. On the ages of flood basalt events. C.R. Geosci. 335, 113–140 (2003).

    Google Scholar 

  11. 11.

    Saunders, A. D. Two LIPs and two Earth-system crises: the impact of the North Atlantic Igneous Province and the Siberian Traps on the Earth-surface carbon cycle. Geol. Mag. 153, 201–222 (2016).

    Google Scholar 

  12. 12.

    Sanei, H., Grasby, S. E. & Beauchamp, B. Latest Permian mercury anomalies. Geology 40, 63–66 (2012).

    Google Scholar 

  13. 13.

    Beerling, D. J., Harfoot, M., Lomax, B. & Pyle, J. A. The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Phil. Trans. R. Soc. A 365, 1843–1866 (2007).

    Google Scholar 

  14. 14.

    Black, B. A., Lamarque, J., Shields, C. A., Elkins-Tanton, L. T. & Kiehl, J. T. Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology 42, 67–70 (2014).

    Google Scholar 

  15. 15.

    Cox, G. M. et al. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth. Earth. Planet. Sci. Lett. 446, 89–99 (2016).

    Google Scholar 

  16. 16.

    Wignall, P. Large igneous provinces and mass extinctions. Earth Sci. Rev. 53, 1–33 (2001).

    Google Scholar 

  17. 17.

    Black, B. A., Elkins-Tanton, L. T., Rowe, M. C. & Peate, I. U. Magnitude and consequences of volatile release from the Siberian Traps. Earth. Planet. Sci. Lett. 317–318, 363–373 (2012).

    Google Scholar 

  18. 18.

    Schmidt, A. et al. Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nat. Geosci. 9, 77–82 (2015).

    Google Scholar 

  19. 19.

    Percival, L. M. E. et al. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Proc. Natl Acad. Sci. USA 114, 7929–7934 (2017).

    Google Scholar 

  20. 20.

    Thordarson, T. & Self, S. The Laki (Skaftár Fires) and Grímsvötn eruptions in 1783–1785. Bull. Volcanol. 55, 233–263 (1993).

    Google Scholar 

  21. 21.

    Pavlov, V., Fluteau, F., Veselovskiy, R., Fetisova, A. & Latyshev, A. Secular geomagnetic variations and volcanic pulses in the Permian–Triassic traps of the Norilsk and Maimecha-Kotui provinces. Izvestiya, Phys. Solid Earth 47, 402–417 (2011).

    Google Scholar 

  22. 22.

    Burgess, S. D. & Bowring, S. A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 1, e1500470 (2015).

    Google Scholar 

  23. 23.

    Glaze, L., Self, S., Schmidt, A. & Hunter, S. Assessing eruption column height in ancient flood basalt eruptions. Earth. Planet. Sci. Lett. 457, 263–270 (2017).

    Google Scholar 

  24. 24.

    Bond, D. P. & Wignall, P. B. in Volcanism, Impacts, and Mass Extinctions: Causes and Effects (eds Keller, G. & Kerr, A.C.) 29–55 (The Geological Society of America, Boulder, 2014).

  25. 25.

    Gutjahr, M. et al. Very large release of mostly volcanic carbon during the Palaeocene–eocene Thermal Maximum. Nature 548, 573–577 (2017).

    Google Scholar 

  26. 26.

    Anderson, K. R. & Poland, M. P. Abundant carbon in the mantle beneath Hawai‘i. Nat. Geosci. 10, 704–708 (2017).

    Google Scholar 

  27. 27.

    McKay, D. I. A., Tyrrell, T., Wilson, P. A. & Foster, G. L. Estimating the impact of the cryptic degassing of large igneous provinces: a mid-Miocene case-study. Earth. Planet. Sci. Lett. 403, 254–262 (2014).

    Google Scholar 

  28. 28.

    Svensen, H. et al. Siberian gas venting and the end-Permian environmental crisis. Earth. Planet. Sci. Lett. 277, 490–500 (2009).

    Google Scholar 

  29. 29.

    Foley, S. F. & Fischer, T. P. An essential role for continental rifts and lithosphere in the deep carbon cycle. Nat. Geosci. 10, 897–902 (2017).

    Google Scholar 

  30. 30.

    Black, B. A., Hauri, E. H., Elkins-Tanton, L. T. & Brown, S. M. Sulfur isotopic evidence for sources of volatiles in Siberian Traps magmas. Earth. Planet. Sci. Lett. 394, 58–69 (2014).

    Google Scholar 

  31. 31.

    Bond, D. P. & Wignall, P. B. Pyrite framboid study of marine Permian–Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. Geol. Soc. Am. Bull. 122, 1265–1279 (2010).

    Google Scholar 

  32. 32.

    Kiehl, J. T. & Shields, C. A. Climate simulation of the latest Permian: implications for mass extinction. Geology 33, 757–760 (2005).

    Google Scholar 

  33. 33.

    Black, B. A., Lamarque, J., Shields, C. A., Elkins-Tanton, L. T. & Kiehl, J. T. Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology 42, 67–70 (2014).

    Google Scholar 

  34. 34.

    Stenchikov, G. et al. Volcanic signals in oceans. J. Geophys. Res. 114, D16104 (2009).

    Google Scholar 

  35. 35.

    Ding, Y. et al. Ocean response to volcanic eruptions in Coupled Model Intercomparison Project 5 simulations. J. Geophys. Res. Oceans 119, 5622–5637 (2014).

    Google Scholar 

  36. 36.

    Zanchettin, D. et al. Background conditions influence the decadal climate response to strong volcanic eruptions. J. Geophys. Res. Atmos. 118, 4090–4106 (2013).

    Google Scholar 

  37. 37.

    Ramanathan, V., Crutzen, P. J., Kiehl, J. T. & Rosenfeld, D. Aerosols, climate, and the hydrological cycle. Science 294, 2119–2124 (2001).

    Google Scholar 

  38. 38.

    Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).

    Google Scholar 

  39. 39.

    Guex, J. et al. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction. Sci. Rep. 6, 23168 (2016).

    Google Scholar 

  40. 40.

    Zhang, F. et al. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction. Sci. Adv. 4, e1602921 (2018).

    Google Scholar 

  41. 41.

    Algeo, T. et al. Association of 34S‐depleted pyrite layers with negative carbonate δ13C excursions at the Permian–Triassic boundary: evidence for upwelling of sulfidic deep‐ocean water masses. Geochem. Geophys. Geosyst. 9, Q04025 (2008).

    Google Scholar 

  42. 42.

    Lau, K. V. et al. Marine anoxia and delayed Earth system recovery after the end-Permian extinction. Proc. Natl Acad. Sci. USA 113, 2360–2365 (2016).

    Google Scholar 

  43. 43.

    Wooden, J. L. et al. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril’sk area, Siberia. Geochim. Cosmochim. Acta 57, 3677–3704 (1993).

    Google Scholar 

  44. 44.

    Black, B. A., Weiss, B. P., Elkins-Tanton, L. T., Veselovskiy, R. V. & Latyshev, A. Siberian Traps volcaniclastic rocks and the role of magma–water interactions. Geol. Soc. Am. Bull. 127, 1437–1452 (2015).

    Google Scholar 

  45. 45.

    Winguth, C. & Winguth, A. M. Simulating Permian–Triassic oceanic anoxia distribution: implications for species extinction and recovery. Geology 40, 127–130 (2012).

    Google Scholar 

  46. 46.

    Bürger, R. & Lynch, M. Evolution and extinction in a changing environment: a quantitative‐genetic analysis. Evolution 49, 151–163 (1995).

    Google Scholar 

  47. 47.

    Chenet, A. et al. Determination of rapid Deccan eruptions across the Cretaceous–Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500‐m‐thick composite section. J. Geophys. Res. 114, B06103 (2009).

    Google Scholar 

  48. 48.

    Chenet, A., Fluteau, F., Courtillot, V., Gérard, M. & Subbarao, K. Determination of rapid Deccan eruptions across the Cretaceous–Tertiary boundary using paleomagnetic secular variation: results from a 1200-m-thick section in the Mahabaleshwar escarpment. J. Geophys. Res. 113, B04101 (2008).

    Google Scholar 

  49. 49.

    Macdonald, F. A. & Wordsworth, R. Initiation of Snowball Earth with volcanic sulfur aerosol emissions. Geophys. Res. Lett. 44, 1938–1946 (2017).

    Google Scholar 

  50. 50.

    Self, S., Schmidt, A. & Mather, T. in Volcanism, Impacts, and Mass Extinctions: Causes and Effects (eds Keller, G. & Kerr, A.C.) 319–338 (The Geological Society of America, Boulder, 2014).

  51. 51.

    Thordarson, T. & Self, S. The Roza Member, Columbia River Basalt Group: a gigantic pahoehoe lava flow field formed by endogenous processes? J. Geophys. Res. 103, 27411–27445 (1998).

    Google Scholar 

  52. 52.

    Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S. & Fischer, W. W. Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256, 295–313 (2007).

    Google Scholar 

  53. 53.

    Clapham, M. E. & Payne, J. L. Acidification, anoxia, and extinction: a multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian. Geology 39, 1059–1062 (2011).

    Google Scholar 

  54. 54.

    Cui, Y. & Kump, L. R. Global warming and the end-Permian extinction event: proxy and modeling perspectives. Earth Sci. Rev. 149, 5–22 (2015).

    Google Scholar 

  55. 55.

    Retallack, G. J. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 411, 287–290 (2001).

    Google Scholar 

  56. 56.

    Retallack, G. J. & Jahren, A. H. Methane release from igneous intrusion of coal during Late Permian extinction events. J. Geol. 116, 1–20 (2008).

    Google Scholar 

  57. 57.

    Retallack, G. J. Carbon dioxide and climate over the past 300 Myr. Phil. Trans. R. Soc. Lond. A 360, 659–673 (2002).

    Google Scholar 

  58. 58.

    Bachan, A. & Payne, J. L. Modelling the impact of pulsed CAMP volcanism on p CO2 and δ13C across the Triassic-Jurassic transition. Geol. Mag. 153, 252–270 (2016).

    Google Scholar 

  59. 59.

    Self, S., Widdowson, M., Thordarson, T. & Jay, A. E. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: a Deccan perspective. Earth. Planet. Sci. Lett. 248, 518–532 (2006).

    Google Scholar 

  60. 60.

    Stordal, F., Svensen, H. H., Aarnes, I. & Roscher, M. Global temperature response to century-scale degassing from the Siberian Traps Large igneous province. Palaeogeogr. Palaeoclimatol. Palaeoecol. 471, 96–107 (2017).

    Google Scholar 

  61. 61.

    Tobin, T. S., Bitz, C. M. & Archer, D. Modeling climatic effects of carbon dioxide emissions from Deccan Traps volcanic eruptions around the Cretaceous–Paleogene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 478, 139–148 (2017).

    Google Scholar 

  62. 62.

    Ganino, C. & Arndt, N. T. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37, 323–326 (2009).

    Google Scholar 

  63. 63.

    Sobolev, S. V. et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–316 (2011).

    Google Scholar 

  64. 64.

    Black, B. A. & Manga, M. Volatiles and the tempo of flood basalt magmatism. Earth Planet. Sci. Lett. 458, 130–140 (2017).

    Google Scholar 

  65. 65.

    Schobben, M., Joachimski, M. M., Korn, D., Leda, L. & Korte, C. Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Res. 26, 675–683 (2014).

    Google Scholar 

  66. 66.

    Archer, D. et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth. Planet. Sci. 37, 117–134 (2009).

    Google Scholar 

  67. 67.

    Jones, M. T., Jerram, D. A., Svensen, H. H. & Grove, C. The effects of large igneous provinces on the global carbon and sulphur cycles. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 4–21 (2016).

    Google Scholar 

  68. 68.

    Berner, R. A. Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proc. Natl Acad. Sci. USA 99, 4172–4177 (2002).

    Google Scholar 

  69. 69.

    Black, B. A., Neely, R. R. & Manga, M. Campanian Ignimbrite volcanism, climate, and the final decline of the Neanderthals. Geology 43, 411–414 (2015).

    Google Scholar 

  70. 70.

    Gent, P. R. et al. The Community Climate System Model Version 4. J. Clim. 24, 4973–4991 (2011).

    Google Scholar 

  71. 71.

    Hurrell, J. W. et al. The community earth system model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).

    Google Scholar 

  72. 72.

    Pinto, J. P., Turco, R. P. & Toon, O. B. Self-limiting physical and chemical effects in volcanic-eruption clouds. J. Geophys. Res. Atmos. 94, 11165–11174 (1989). 

    Google Scholar 

  73. 73.

    English, J., Toon, O., Mills, M. & Yu, F. Microphysical simulations of new particle formation in the upper troposphere and lower stratosphere. Atmos. Chem. Phys. 11, 9303–9322 (2011).

    Google Scholar 

  74. 74.

    Turco, R., Hamill, P., Toon, O., Whitten, R. & Kiang, C. A one-dimensional model describing aerosol formation and evolution in the stratosphere: I. Physical processes and mathematical analogs. J. Atmos. Sci. 36, 699–717 (1979).

    Google Scholar 

  75. 75.

    Toon, O., Turco, R., Westphal, D., Malone, R. & Liu, M. A multidimensional model for aerosols: description of computational analogs. J. Atmos. Sci. 45, 2123–2144 (1988).

    Google Scholar 

  76. 76.

    Mills, M. J., Toon, O. B., Turco, R. P., Kinnison, D. E. & Garcia, R. R. Massive global ozone loss predicted following regional nuclear conflict. Proc. Natl Acad. Sci. USA 105, 5307–5312 (2008).

    Google Scholar 

  77. 77.

    English, J. M., Toon, O. B. & Mills, M. J. Microphysical simulations of large volcanic eruptions: Pinatubo and Toba. J. Geophys. Res. Atmos. 118, 1880–1895 (2013).

    Google Scholar 

  78. 78.

    Aquila, V., Oman, L. D., Stolarski, R. S., Colarco, P. R. & Newman, P. A. Dispersion of the volcanic sulfate cloud from a Mount Pinatubo-like eruption. J. Geophys. Res. 117, D06216 (2012).

    Google Scholar 

  79. 79.

    Toohey, M., Krüger, K., Niemeier, U. & Timmreck, C. The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions. Atmos. Chem. Phys. 11, 12351–12367 (2011).

    Google Scholar 

  80. 80.

    Gettelman, A., Kay, J. & Shell, K. The evolution of climate sensitivity and climate feedbacks in the Community Atmosphere Model. J. Clim. 25, 1453–1469 (2012).

    Google Scholar 

  81. 81.

    Knutti, R. & Hegerl, G. C. The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nat. Geosci. 1, 735–743 (2008).

    Google Scholar 

  82. 82.

    Tilmes, S. et al. Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2). Geosci. Model Dev. 8, 1395–1426 (2015).

    Google Scholar 

  83. 83.

    Tabazadeh, A., Toon, O. B., Clegg, S. L. & Hamill, P. A new parameterization of H2SO4/H2O aerosol composition: atmospheric implications. Geophys. Res. Lett. 24, 1931–1934 (1997).

    Google Scholar 

  84. 84.

    Neely, R. R. et al. Implications of extinction due to meteoritic smoke in the upper stratosphere. Geophys. Res. Lett. 38, L24808 (2011).

    Google Scholar 

  85. 85.

    Smith, R. et al. The Parallel Ocean Program (POP) Reference Manual: Ocean component of the Community Climate System Model (CCSM) LAUR-10-01853 (Los Alamos National Laboratory, 2010).

  86. 86.

    Rees, P. M., Gibbs, M. T., Ziegler, A. M., Kutzbach, J. E. & Behling, P. J. Permian climates: evaluating model predictions using global paleobotanical data. Geology 27, 891–894 (1999).

    Google Scholar 

  87. 87.

    Garcia, H. E. & Gordon, L. I. Oxygen solubility in seawater: better fitting equations. Limnol. Oceanogr. 37, 1307–1312 (1992).

    Google Scholar 

  88. 88.

    Ruppel, C. D., & Kessler, J, D. The interaction of climate change and methane hydrates. Rev. Geophys. 55, 126–128 (2017).

    Google Scholar 

  89. 89.

    Brand, U. et al. Methane hydrate: killer cause of Earth’s greatest mass extinction. Palaeoworld 25, 496–507 (2016).

    Google Scholar 

Download references

Acknowledgements

B.A.B. acknowledges support from NSF grant 1615147. L.T.E.-T. and B.A.B. are grateful for formative early support from NSF grant 0807585. R.R.N. acknowledges support from the NSF via the NCAR Advanced Study Program post-doctoral fellowship. We acknowledge the high-performance computing support from Yellowstone and Cheyenne provided by NCAR’s Computational and Information Systems Laboratory, sponsored by NSF. A. Schmidt offered helpful suggestions on an earlier version of the manuscript.

Author information

Affiliations

Authors

Contributions

B.A.B. conceived the research and analysed the results. B.A.B. and R.R.N. designed and performed the simulations with input from J.-F.L., J.T.K., C.A.S., M.J.M., C.B. and L.T.E.-T. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Benjamin A. Black.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables and Figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Black, B.A., Neely, R.R., Lamarque, J. et al. Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing. Nature Geosci 11, 949–954 (2018). https://doi.org/10.1038/s41561-018-0261-y

Download citation

Further reading