Abstract

Siberian Traps flood basalt magmatism coincided with the end-Permian mass extinction approximately 252 million years ago. Proposed links between magmatism and ecological catastrophe include global warming, global cooling, ozone depletion and changes in ocean chemistry. However, the critical combinations of environmental changes responsible for global mass extinction are undetermined. In particular, the combined and competing climate effects of sulfur and carbon outgassing remain to be quantified. Here we present results from global climate model simulations of flood basalt outgassing that account for sulfur chemistry and aerosol microphysics with coupled atmosphere and ocean circulation. We consider the effects of sulfur and carbon in isolation and in tandem. We find that coupling with the ocean strongly influences the climate response to prolonged flood basalt-scale outgassing. We suggest that sulfur and carbon emissions from the Siberian Traps combined to generate systemic swings in temperature, ocean circulation and hydrology within a longer-term trend towards a greenhouse world in the early Triassic.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

Model outputs used to generate Figs. 13 have been archived at PANGAEA (https://doi.pangaea.de/10.1594/PANGAEA.894969). Proxy data are available from the original sources as cited in the text.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Joachimski, M. M. et al. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40, 195–198 (2012).

  2. 2.

    Cui, Y., Kump, L. R. & Ridgwell, A. Initial assessment of the carbon emission rate and climatic consequences during the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 389, 128–136 (2013).

  3. 3.

    Sun, Y. et al. Lethally hot temperatures during the Early Triassic greenhouse. Science 338, 366–370 (2012).

  4. 4.

    Chen, J. et al. High-resolution SIMS oxygen isotope analysis on conodont apatite from South China and implications for the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 448, 26–38 (2016).

  5. 5.

    Burgess, S. D., Bowring, S. & Shen, S. High-precision timeline for Earth’s most severe extinction. Proc. Natl Acad. Sci. USA 111, 3316–3321 (2014).

  6. 6.

    Song, H. et al. Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic. Earth. Planet. Sci. Lett. 424, 140–147 (2015).

  7. 7.

    Dudás, F.Ö., Yuan, D., Shen, S. & Bowring, S. A. A conodont-based revision of the 87Sr/86Sr seawater curve across the Permian-Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 470, 40–53 (2017).

  8. 8.

    Payne, J. L. & Clapham, M. E. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annu. Rev. Earth. Planet. Sci. 40, 89–111 (2012).

  9. 9.

    Clarkson, M. O. et al. Ocean acidification and the Permo-Triassic mass extinction. Science 348, 229–232 (2015).

  10. 10.

    Courtillot, V. E. & Renne, P. R. On the ages of flood basalt events. C.R. Geosci. 335, 113–140 (2003).

  11. 11.

    Saunders, A. D. Two LIPs and two Earth-system crises: the impact of the North Atlantic Igneous Province and the Siberian Traps on the Earth-surface carbon cycle. Geol. Mag. 153, 201–222 (2016).

  12. 12.

    Sanei, H., Grasby, S. E. & Beauchamp, B. Latest Permian mercury anomalies. Geology 40, 63–66 (2012).

  13. 13.

    Beerling, D. J., Harfoot, M., Lomax, B. & Pyle, J. A. The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Phil. Trans. R. Soc. A 365, 1843–1866 (2007).

  14. 14.

    Black, B. A., Lamarque, J., Shields, C. A., Elkins-Tanton, L. T. & Kiehl, J. T. Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology 42, 67–70 (2014).

  15. 15.

    Cox, G. M. et al. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth. Earth. Planet. Sci. Lett. 446, 89–99 (2016).

  16. 16.

    Wignall, P. Large igneous provinces and mass extinctions. Earth Sci. Rev. 53, 1–33 (2001).

  17. 17.

    Black, B. A., Elkins-Tanton, L. T., Rowe, M. C. & Peate, I. U. Magnitude and consequences of volatile release from the Siberian Traps. Earth. Planet. Sci. Lett. 317–318, 363–373 (2012).

  18. 18.

    Schmidt, A. et al. Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nat. Geosci. 9, 77–82 (2015).

  19. 19.

    Percival, L. M. E. et al. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Proc. Natl Acad. Sci. USA 114, 7929–7934 (2017).

  20. 20.

    Thordarson, T. & Self, S. The Laki (Skaftár Fires) and Grímsvötn eruptions in 1783–1785. Bull. Volcanol. 55, 233–263 (1993).

  21. 21.

    Pavlov, V., Fluteau, F., Veselovskiy, R., Fetisova, A. & Latyshev, A. Secular geomagnetic variations and volcanic pulses in the Permian–Triassic traps of the Norilsk and Maimecha-Kotui provinces. Izvestiya, Phys. Solid Earth 47, 402–417 (2011).

  22. 22.

    Burgess, S. D. & Bowring, S. A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 1, e1500470 (2015).

  23. 23.

    Glaze, L., Self, S., Schmidt, A. & Hunter, S. Assessing eruption column height in ancient flood basalt eruptions. Earth. Planet. Sci. Lett. 457, 263–270 (2017).

  24. 24.

    Bond, D. P. & Wignall, P. B. in Volcanism, Impacts, and Mass Extinctions: Causes and Effects (eds Keller, G. & Kerr, A.C.) 29–55 (The Geological Society of America, Boulder, 2014).

  25. 25.

    Gutjahr, M. et al. Very large release of mostly volcanic carbon during the Palaeocene–eocene Thermal Maximum. Nature 548, 573–577 (2017).

  26. 26.

    Anderson, K. R. & Poland, M. P. Abundant carbon in the mantle beneath Hawai‘i. Nat. Geosci. 10, 704–708 (2017).

  27. 27.

    McKay, D. I. A., Tyrrell, T., Wilson, P. A. & Foster, G. L. Estimating the impact of the cryptic degassing of large igneous provinces: a mid-Miocene case-study. Earth. Planet. Sci. Lett. 403, 254–262 (2014).

  28. 28.

    Svensen, H. et al. Siberian gas venting and the end-Permian environmental crisis. Earth. Planet. Sci. Lett. 277, 490–500 (2009).

  29. 29.

    Foley, S. F. & Fischer, T. P. An essential role for continental rifts and lithosphere in the deep carbon cycle. Nat. Geosci. 10, 897–902 (2017).

  30. 30.

    Black, B. A., Hauri, E. H., Elkins-Tanton, L. T. & Brown, S. M. Sulfur isotopic evidence for sources of volatiles in Siberian Traps magmas. Earth. Planet. Sci. Lett. 394, 58–69 (2014).

  31. 31.

    Bond, D. P. & Wignall, P. B. Pyrite framboid study of marine Permian–Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. Geol. Soc. Am. Bull. 122, 1265–1279 (2010).

  32. 32.

    Kiehl, J. T. & Shields, C. A. Climate simulation of the latest Permian: implications for mass extinction. Geology 33, 757–760 (2005).

  33. 33.

    Black, B. A., Lamarque, J., Shields, C. A., Elkins-Tanton, L. T. & Kiehl, J. T. Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology 42, 67–70 (2014).

  34. 34.

    Stenchikov, G. et al. Volcanic signals in oceans. J. Geophys. Res. 114, D16104 (2009).

  35. 35.

    Ding, Y. et al. Ocean response to volcanic eruptions in Coupled Model Intercomparison Project 5 simulations. J. Geophys. Res. Oceans 119, 5622–5637 (2014).

  36. 36.

    Zanchettin, D. et al. Background conditions influence the decadal climate response to strong volcanic eruptions. J. Geophys. Res. Atmos. 118, 4090–4106 (2013).

  37. 37.

    Ramanathan, V., Crutzen, P. J., Kiehl, J. T. & Rosenfeld, D. Aerosols, climate, and the hydrological cycle. Science 294, 2119–2124 (2001).

  38. 38.

    Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).

  39. 39.

    Guex, J. et al. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction. Sci. Rep. 6, 23168 (2016).

  40. 40.

    Zhang, F. et al. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction. Sci. Adv. 4, e1602921 (2018).

  41. 41.

    Algeo, T. et al. Association of 34S‐depleted pyrite layers with negative carbonate δ13C excursions at the Permian–Triassic boundary: evidence for upwelling of sulfidic deep‐ocean water masses. Geochem. Geophys. Geosyst. 9, Q04025 (2008).

  42. 42.

    Lau, K. V. et al. Marine anoxia and delayed Earth system recovery after the end-Permian extinction. Proc. Natl Acad. Sci. USA 113, 2360–2365 (2016).

  43. 43.

    Wooden, J. L. et al. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril’sk area, Siberia. Geochim. Cosmochim. Acta 57, 3677–3704 (1993).

  44. 44.

    Black, B. A., Weiss, B. P., Elkins-Tanton, L. T., Veselovskiy, R. V. & Latyshev, A. Siberian Traps volcaniclastic rocks and the role of magma–water interactions. Geol. Soc. Am. Bull. 127, 1437–1452 (2015).

  45. 45.

    Winguth, C. & Winguth, A. M. Simulating Permian–Triassic oceanic anoxia distribution: implications for species extinction and recovery. Geology 40, 127–130 (2012).

  46. 46.

    Bürger, R. & Lynch, M. Evolution and extinction in a changing environment: a quantitative‐genetic analysis. Evolution 49, 151–163 (1995).

  47. 47.

    Chenet, A. et al. Determination of rapid Deccan eruptions across the Cretaceous–Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500‐m‐thick composite section. J. Geophys. Res. 114, B06103 (2009).

  48. 48.

    Chenet, A., Fluteau, F., Courtillot, V., Gérard, M. & Subbarao, K. Determination of rapid Deccan eruptions across the Cretaceous–Tertiary boundary using paleomagnetic secular variation: results from a 1200-m-thick section in the Mahabaleshwar escarpment. J. Geophys. Res. 113, B04101 (2008).

  49. 49.

    Macdonald, F. A. & Wordsworth, R. Initiation of Snowball Earth with volcanic sulfur aerosol emissions. Geophys. Res. Lett. 44, 1938–1946 (2017).

  50. 50.

    Self, S., Schmidt, A. & Mather, T. in Volcanism, Impacts, and Mass Extinctions: Causes and Effects (eds Keller, G. & Kerr, A.C.) 319–338 (The Geological Society of America, Boulder, 2014).

  51. 51.

    Thordarson, T. & Self, S. The Roza Member, Columbia River Basalt Group: a gigantic pahoehoe lava flow field formed by endogenous processes? J. Geophys. Res. 103, 27411–27445 (1998).

  52. 52.

    Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S. & Fischer, W. W. Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256, 295–313 (2007).

  53. 53.

    Clapham, M. E. & Payne, J. L. Acidification, anoxia, and extinction: a multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian. Geology 39, 1059–1062 (2011).

  54. 54.

    Cui, Y. & Kump, L. R. Global warming and the end-Permian extinction event: proxy and modeling perspectives. Earth Sci. Rev. 149, 5–22 (2015).

  55. 55.

    Retallack, G. J. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 411, 287–290 (2001).

  56. 56.

    Retallack, G. J. & Jahren, A. H. Methane release from igneous intrusion of coal during Late Permian extinction events. J. Geol. 116, 1–20 (2008).

  57. 57.

    Retallack, G. J. Carbon dioxide and climate over the past 300 Myr. Phil. Trans. R. Soc. Lond. A 360, 659–673 (2002).

  58. 58.

    Bachan, A. & Payne, J. L. Modelling the impact of pulsed CAMP volcanism on p CO2 and δ13C across the Triassic-Jurassic transition. Geol. Mag. 153, 252–270 (2016).

  59. 59.

    Self, S., Widdowson, M., Thordarson, T. & Jay, A. E. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: a Deccan perspective. Earth. Planet. Sci. Lett. 248, 518–532 (2006).

  60. 60.

    Stordal, F., Svensen, H. H., Aarnes, I. & Roscher, M. Global temperature response to century-scale degassing from the Siberian Traps Large igneous province. Palaeogeogr. Palaeoclimatol. Palaeoecol. 471, 96–107 (2017).

  61. 61.

    Tobin, T. S., Bitz, C. M. & Archer, D. Modeling climatic effects of carbon dioxide emissions from Deccan Traps volcanic eruptions around the Cretaceous–Paleogene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 478, 139–148 (2017).

  62. 62.

    Ganino, C. & Arndt, N. T. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37, 323–326 (2009).

  63. 63.

    Sobolev, S. V. et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–316 (2011).

  64. 64.

    Black, B. A. & Manga, M. Volatiles and the tempo of flood basalt magmatism. Earth Planet. Sci. Lett. 458, 130–140 (2017).

  65. 65.

    Schobben, M., Joachimski, M. M., Korn, D., Leda, L. & Korte, C. Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Res. 26, 675–683 (2014).

  66. 66.

    Archer, D. et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth. Planet. Sci. 37, 117–134 (2009).

  67. 67.

    Jones, M. T., Jerram, D. A., Svensen, H. H. & Grove, C. The effects of large igneous provinces on the global carbon and sulphur cycles. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 4–21 (2016).

  68. 68.

    Berner, R. A. Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proc. Natl Acad. Sci. USA 99, 4172–4177 (2002).

  69. 69.

    Black, B. A., Neely, R. R. & Manga, M. Campanian Ignimbrite volcanism, climate, and the final decline of the Neanderthals. Geology 43, 411–414 (2015).

  70. 70.

    Gent, P. R. et al. The Community Climate System Model Version 4. J. Clim. 24, 4973–4991 (2011).

  71. 71.

    Hurrell, J. W. et al. The community earth system model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).

  72. 72.

    Pinto, J. P., Turco, R. P. & Toon, O. B. Self-limiting physical and chemical effects in volcanic-eruption clouds. J. Geophys. Res. Atmos. 94, 11165–11174 (1989). 

  73. 73.

    English, J., Toon, O., Mills, M. & Yu, F. Microphysical simulations of new particle formation in the upper troposphere and lower stratosphere. Atmos. Chem. Phys. 11, 9303–9322 (2011).

  74. 74.

    Turco, R., Hamill, P., Toon, O., Whitten, R. & Kiang, C. A one-dimensional model describing aerosol formation and evolution in the stratosphere: I. Physical processes and mathematical analogs. J. Atmos. Sci. 36, 699–717 (1979).

  75. 75.

    Toon, O., Turco, R., Westphal, D., Malone, R. & Liu, M. A multidimensional model for aerosols: description of computational analogs. J. Atmos. Sci. 45, 2123–2144 (1988).

  76. 76.

    Mills, M. J., Toon, O. B., Turco, R. P., Kinnison, D. E. & Garcia, R. R. Massive global ozone loss predicted following regional nuclear conflict. Proc. Natl Acad. Sci. USA 105, 5307–5312 (2008).

  77. 77.

    English, J. M., Toon, O. B. & Mills, M. J. Microphysical simulations of large volcanic eruptions: Pinatubo and Toba. J. Geophys. Res. Atmos. 118, 1880–1895 (2013).

  78. 78.

    Aquila, V., Oman, L. D., Stolarski, R. S., Colarco, P. R. & Newman, P. A. Dispersion of the volcanic sulfate cloud from a Mount Pinatubo-like eruption. J. Geophys. Res. 117, D06216 (2012).

  79. 79.

    Toohey, M., Krüger, K., Niemeier, U. & Timmreck, C. The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions. Atmos. Chem. Phys. 11, 12351–12367 (2011).

  80. 80.

    Gettelman, A., Kay, J. & Shell, K. The evolution of climate sensitivity and climate feedbacks in the Community Atmosphere Model. J. Clim. 25, 1453–1469 (2012).

  81. 81.

    Knutti, R. & Hegerl, G. C. The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nat. Geosci. 1, 735–743 (2008).

  82. 82.

    Tilmes, S. et al. Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2). Geosci. Model Dev. 8, 1395–1426 (2015).

  83. 83.

    Tabazadeh, A., Toon, O. B., Clegg, S. L. & Hamill, P. A new parameterization of H2SO4/H2O aerosol composition: atmospheric implications. Geophys. Res. Lett. 24, 1931–1934 (1997).

  84. 84.

    Neely, R. R. et al. Implications of extinction due to meteoritic smoke in the upper stratosphere. Geophys. Res. Lett. 38, L24808 (2011).

  85. 85.

    Smith, R. et al. The Parallel Ocean Program (POP) Reference Manual: Ocean component of the Community Climate System Model (CCSM) LAUR-10-01853 (Los Alamos National Laboratory, 2010).

  86. 86.

    Rees, P. M., Gibbs, M. T., Ziegler, A. M., Kutzbach, J. E. & Behling, P. J. Permian climates: evaluating model predictions using global paleobotanical data. Geology 27, 891–894 (1999).

  87. 87.

    Garcia, H. E. & Gordon, L. I. Oxygen solubility in seawater: better fitting equations. Limnol. Oceanogr. 37, 1307–1312 (1992).

  88. 88.

    Ruppel, C. D., & Kessler, J, D. The interaction of climate change and methane hydrates. Rev. Geophys. 55, 126–128 (2017).

  89. 89.

    Brand, U. et al. Methane hydrate: killer cause of Earth’s greatest mass extinction. Palaeoworld 25, 496–507 (2016).

Download references

Acknowledgements

B.A.B. acknowledges support from NSF grant 1615147. L.T.E.-T. and B.A.B. are grateful for formative early support from NSF grant 0807585. R.R.N. acknowledges support from the NSF via the NCAR Advanced Study Program post-doctoral fellowship. We acknowledge the high-performance computing support from Yellowstone and Cheyenne provided by NCAR’s Computational and Information Systems Laboratory, sponsored by NSF. A. Schmidt offered helpful suggestions on an earlier version of the manuscript.

Author information

Affiliations

  1. CUNY City College and Graduate Center, New York, NY, USA

    • Benjamin A. Black
  2. National Centre Atmospheric Science, University of Leeds, Leeds, UK

    • Ryan R. Neely
  3. Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, CO, USA

    • Ryan R. Neely
    • , Jean-François Lamarque
    •  & Christine A. Shields
  4. School of Earth and Environment, University of Leeds, Leeds, UK

    • Ryan R. Neely
  5. School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA

    • Linda T. Elkins-Tanton
  6. University of California, Santa Cruz, Santa Cruz, CA, USA

    • Jeffrey T. Kiehl
  7. Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USA

    • Michael J. Mills
    •  & Charles Bardeen

Authors

  1. Search for Benjamin A. Black in:

  2. Search for Ryan R. Neely in:

  3. Search for Jean-François Lamarque in:

  4. Search for Linda T. Elkins-Tanton in:

  5. Search for Jeffrey T. Kiehl in:

  6. Search for Christine A. Shields in:

  7. Search for Michael J. Mills in:

  8. Search for Charles Bardeen in:

Contributions

B.A.B. conceived the research and analysed the results. B.A.B. and R.R.N. designed and performed the simulations with input from J.-F.L., J.T.K., C.A.S., M.J.M., C.B. and L.T.E.-T. All authors contributed to writing the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Benjamin A. Black.

Supplementary information

  1. Supplementary Information

    Supplementary Tables and Figures.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41561-018-0261-y