Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of calcification in carbonate compensation

Abstract

The long-term recovery of the oceans from present and past acidification is possible due to neutralization by the dissolution of biogenic CaCO3 in bottom sediments, that is, carbonate compensation. However, such chemical compensation is unable to account for all features of past acidification events, such as the enhanced accumulation of CaCO3 at deeper depths after acidification. This overdeepening of CaCO3 accumulation led to the idea that an increased supply of alkalinity to the oceans, via amplified weathering of continental rocks, must accompany chemical compensation. Here we discuss an alternative: that changes to calcification, a biological process dependent on environmental conditions, can enhance and modify chemical compensation and account for overdeepening. Using a simplified ocean box model with both constant and variable calcification, we show that even modest drops in calcification can lead to appreciable long-term alkalinity build-up in the oceans and, thus, create overdeepening; we term this latter effect biological compensation. The chemical and biological manifestations of compensation differ in terms of controls, timing and effects, which we illustrate with model results. To better predict oceanic evolution during the Anthropocene and improve the interpretation of the palaeoceanographic record, it is necessary to better understand biological compensation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic diagram of the critical horizons of open-ocean carbonate compensation.
Fig. 2: Predicted evolution of carbonate horizons as a result of different compensation mechanisms for Anthropocene-like conditions.
Fig. 3: Predicted evolution of the carbonate horizons as a result of a 10% (maximum) drop in calcification for Anthropocene-like conditions.
Fig. 4: Predicted evolution of the carbonate horizons and PCO2 as a result of added carbonate alkalinity input (FA) for Anthropocene-like conditions.
Fig. 5: Simulation of the effects of a quasi-K–Pg calcification collapse.

Data availability

The authors declare that the data supporting the findings of this study are available within the article and its supplementary information files and further information are available from the corresponding author upon request.

References

  1. 1.

    Falkowski, P. et al. The global carbon cycle: a test of our knowledge of earth as a system. Science 290, 291–296 (2000).

    Article  Google Scholar 

  2. 2.

    Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics (Princeton Univ. Press, Princeton, 2006).

    Google Scholar 

  3. 3.

    Morse, J. W. & Mackenzie, F. T. Geochemistry of Sedimentary Carbonates (Elsevier, Amsterdam, 1990).

    Google Scholar 

  4. 4.

    Zeebe, R. E. & Westbroek, P. A. A simple model for the CaCO3 saturation state of the ocean: the “strangelove”, the “Neritan”, and the “Cretan” ocean. Geochem. Geophys. Geosyst. 4, 1104 (2003).

    Article  Google Scholar 

  5. 5.

    Andersson, A. J., Mackenzie, F. T. & Ver, L. M. Solution of shallow-water carbonates: an insignificant buffer against rising atmospheric CO2. Geology 31, 513–516 (2003).

    Article  Google Scholar 

  6. 6.

    Morse, J. W., Andersson, A. J. & Mackenzie, F. T. Initial responses of carbonate shelf sediments to rising atmospheric pCO2 and “ocean acidification”: role of high Mg-calcites. Geochim. Cosmochim. Acta 70, 5814–5830 (2006).

    Article  Google Scholar 

  7. 7.

    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).

    Article  Google Scholar 

  8. 8.

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability — Part A: Global and Sectoral Aspects (eds Pörtner, H. O. et al.) 411–484 (Cambridge Univ. Press, 2014).

  9. 9.

    Riebesell, U. et al. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407, 364–367 (2000).

    Article  Google Scholar 

  10. 10.

    Ridgwell, A., Zondervan, I., Hargreaves, J. C., Bijma, J. & Lenton, T. M. Assessing the potential long-term increase of oceanic fossil fuel CO2 uptake due to CO2-calcification feedback. Biogeosciences 4, 481–492 (2007).

    Article  Google Scholar 

  11. 11.

    Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2008).

    Article  Google Scholar 

  12. 12.

    Iglesias-Rodriguez, M. D. et al. Phytoplankton calcification in a high-CO2 world. Science 320, 336–340 (2008).

    Article  Google Scholar 

  13. 13.

    Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).

    Article  Google Scholar 

  14. 14.

    Lohbeck, K. T., Riebesell, U. & Reusch, T. B. H. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 5, 346–351 (2012).

    Article  Google Scholar 

  15. 15.

    Beaufort, L. et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476, 80–83 (2011).

    Article  Google Scholar 

  16. 16.

    Eyre, B. D. et al. Coral reefs will transition to net dissolving before end of century. Science 359, 908–911 (2018).

    Article  Google Scholar 

  17. 17.

    Gibbs, S. J., Bown, P. R., Ridgwell, A., Young, J. R., Poulton, A. J. & O’Dea, S. A. Ocean warming, not acidification, controlled coccolithophore response during past greenhouse climate change. Geology 44, 59–62 (2016).

    Article  Google Scholar 

  18. 18.

    Frieling, J. et al. Extreme warmth and heat-stressed plankton in the tropics during the Paleocene-Eocene thermal maximum. Sci. Adv. 3, e1600891 (2017).

    Article  Google Scholar 

  19. 19.

    Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).

    Article  Google Scholar 

  20. 20.

    Barker, S. & Elderfield, H. Foraminiferal calcification response to glacial–interglacial changes in atmospheric CO2. Science 297, 833–836 (2002).

    Article  Google Scholar 

  21. 21.

    Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058 (2012).

    Article  Google Scholar 

  22. 22.

    Henehan, M. J. et al. Size-dependent response of foraminiferal calcification to seawater carbonate chemistry. Biogeosciences 14, 3287–3308 (2017).

    Article  Google Scholar 

  23. 23.

    Gibbs, S. J., Stoll, H. M., Brown, P. R. & Bralower, T. J. Ocean acidification and surface water carbonate production across the Paleocene-Eocene thermal maximum. Earth Planet. Sci. Lett. 295, 583–592 (2010).

    Article  Google Scholar 

  24. 24.

    Aze, T. et al. Extreme warming of tropical waters during the Paleocene–Eocene thermal maximum. Geology 42, 739–742 (2014).

    Article  Google Scholar 

  25. 25.

    Berner, E. K. & Berner, R. A. Global Environment: Water, Air and Geochemical Cycles (Princeton Univ. Press, Princeton, 2012).

    Google Scholar 

  26. 26.

    Caldeira, K. & Rampino, M. R. Aftermath of the end-Cretaceous mass extinction: possible biogeochemical stabilization of the carbon cycle and climate. Paleoceanography 8, 515–525 (1993).

    Article  Google Scholar 

  27. 27.

    Sigman, D. M., McCorkle, D. C. & Martin, W. R. The calcite lysocline as a constraint on glacial/interglacial low-latitude production changes. Glob. Biogeochem. Cycles 12, 409–427 (1998).

    Article  Google Scholar 

  28. 28.

    Boudreau, B. P., Middelburg, J. J., Hofmann, A. & Meysman, F. J. R. Ongoing transients in carbonate compensation. Glob. Biogeochem. Cycles 24, GB4010 (2010).

    Article  Google Scholar 

  29. 29.

    Luo, Y. & Boudreau, B. P. Future acidification of marginal seas: a comparative study of the Japan/East Sea and the South China Sea. Geophys. Res. Lett. 43, 6393–6401 (2016).

    Article  Google Scholar 

  30. 30.

    Zhang, H. & Cao, L. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification. Sci. Rep. 6, 20284 (2016).

    Article  Google Scholar 

  31. 31.

    Zachos, J. C. et al. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308, 1611–1615 (2005).

    Article  Google Scholar 

  32. 32.

    Luo, Y., Boudreau, B. P., Dickens, G. R., Sluijs, A. & Middelburg, J. J. An alternative model for CaCO3 over-shooting during the PETM: biological carbonate compensation. Earth Planet. Sci. Lett. 453, 223–233 (2016).

    Article  Google Scholar 

  33. 33.

    Lenton, T. M. & Britton, C. Enhanced carbonate and silicate weathering accelerates recovery from fossil fuel CO2 perturbations. Glob. Biogeochem. Cycles 20, GB3009 (2006).

    Google Scholar 

  34. 34.

    Ilyina, T. & Zeebe, R. E. Detection and projection of carbonate dissolution in the water column and deep-sea sediments due to ocean acidification. Geophys. Res. Lett. 39, L06606 (2012).

    Article  Google Scholar 

  35. 35.

    Monteiro, F. M. et al. Why marine phytoplankton calcify? Sci. Adv. 2, e1501822 (2016).

    Article  Google Scholar 

  36. 36.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    Article  Google Scholar 

  37. 37.

    Penman, D. E. et al. An abyssal carbonate compensation depth overshoot in the aftermath of the Palaeocene-Eocene thermal maximum. Nat. Geosci. 9, 575–580 (2016).

    Article  Google Scholar 

  38. 38.

    Cui, Y. et al. Slow release of fossil carbon during the Paleocene-Eocene thermal maximum. Nat. Geosci. 4, 481–485 (2011).

    Article  Google Scholar 

  39. 39.

    Zeebe, R. E. & Zachos, J. C. Long-term legacy of massive carbon input to the Earth system: anthropocene vs. Eocene. Phil. Trans. R. Soc. A371, 20120006 (2013).

    Article  Google Scholar 

  40. 40.

    Tyrrell, T., Merico, A. & Armstrong McKay, D. I. Severity of ocean acidification following the end-Cretaceous asteroid impact. Proc. Nat. Acad. Sci. USA 112, 6556–6561 (2015).

    Article  Google Scholar 

  41. 41.

    D’Hondt, S. Consequences of the Cretaceous/Paleogene mass extinction for marine systems. Ann. Rev. Ecol. Evol. Syst. 36, 295–317 (2005).

    Article  Google Scholar 

  42. 42.

    Henehan, M. J., Hull, P. M., Penman, D. E., Rae, J. W. B. & Schmidt, D. N. Biogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study. Phil. Trans. R. Soc. B 371, 20150510 (2016).

    Article  Google Scholar 

  43. 43.

    Jansen, H., Zeebe, R. E. & Wolf-Gladrow, D. A. Modeling the dissolution of settling CaCO3 in the ocean. Glob. Biogeochem. Cycles https://doi.org/10.1029/2000GB001279 (2002).

    Article  Google Scholar 

  44. 44.

    Tyrrell, T. & Zeebe, R. E. History of carbonate ion concentration over the last 100 million years. Geochim. Cosmochim. Acta 68, 3521–3530 (2004).

    Article  Google Scholar 

  45. 45.

    Boudreau, B. P., Middelburg, J. J. & Meysman, F. J. R. Carbonate compensation dynamics. Geophys. Res. Lett. 37, L03603 (2010).

    Article  Google Scholar 

  46. 46.

    Mucci, A. The solubility of calcite and aragonite in seawater at various salinities, temperatures and one atmosphere total pressure. Am. J. Sci. 283, 780–799 (1983).

    Article  Google Scholar 

  47. 47.

    Boudreau, B. P. Carbonate dissolution rates at the deep ocean floor. Geophys. Res. Lett. 40, 744–748 (2013).

    Article  Google Scholar 

  48. 48.

    Boudreau, B. P. & Jorgensen, B. B. The Benthic Boundary Layer: Transport Processes and Biogeochemistry (Oxford Univ. Press, Oxford, 2001).

    Google Scholar 

  49. 49.

    Sulpis, O., Lix, C., Mucci, A. & Boudreau, B. P. Calcite dissolution kinetics at the sediment-water interface in natural seawater. Mar. Chem. 195, 70–83 (2017).

    Article  Google Scholar 

  50. 50.

    Kolla, V., Bé, A. W. H. & Biscaye, P. E. Calcium carbonate distribution in the surface sediments of the Indian Ocean. J. Geophys. Res. 81, 2605–2616 (1976).

    Article  Google Scholar 

  51. 51.

    Berger, W. H. Planktonic foraminifera: selective solution and paleoclimatic interpretation. Deep Sea Res. 15, 31–43 (1968).

    Google Scholar 

  52. 52.

    Morse, J. W. & Berner, R. A. Dissolution kinetics of calcium carbonate in sea water: II. A kinetic origin for the lysocline. Am. J. Sci. 272, 840–851 (1972).

    Article  Google Scholar 

  53. 53.

    Zeebe, R. E. & Wolf-Gladrow, D. A. CO 2 in Seawater: Equilibrium, Kinetics, Isotopes Vol. 65 (Elsevier, Amsterdam, 2001).

  54. 54.

    Archer, D. A data-driven model of the global calcite lysocline. Glob. Biogeochem. Cycles 10, 511–526 (1996).

    Article  Google Scholar 

  55. 55.

    Emelyanov, E. M. The Barrier Zones in the Ocean (Springer-Verlag, New York, 2005).

    Google Scholar 

  56. 56.

    Pälike, H. et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488, 609–614 (2012).

    Article  Google Scholar 

  57. 57.

    Berger, W. H. Planktonic Foraminifera: selective solution and the lysocline. Mar. Geol. 8, 111–138 (1970).

    Article  Google Scholar 

Download references

Acknowledgements

B.P.B. gratefully acknowledges funding from NSERC and the Killam Trust. J.J.M. was supported by the Netherlands Earth System Science Center, as was a sabbatical stay in Utrecht by B.P.B.

Author information

Affiliations

Authors

Contributions

B.P.B. provided the concept for the paper, ran the code and co-wrote the paper. J.J.M. researched various aspects of the problem and co-wrote the paper. Y.L. wrote the code and contributed to the writing of the paper. Address scientific requests and inquiries to B.P.B. (bernie.boudreau@dal.ca), and questions regarding the code can be directed to Y.L. (luoyiming@mail.sysu.edu.cn).

Corresponding authors

Correspondence to Bernard P. Boudreau or Yiming Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–4

Supplementary Code

Fortran code: code for the calculation of the CO2 compensation system.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boudreau, B.P., Middelburg, J.J. & Luo, Y. The role of calcification in carbonate compensation. Nature Geosci 11, 894–900 (2018). https://doi.org/10.1038/s41561-018-0259-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing