Abstract
The long-term recovery of the oceans from present and past acidification is possible due to neutralization by the dissolution of biogenic CaCO3 in bottom sediments, that is, carbonate compensation. However, such chemical compensation is unable to account for all features of past acidification events, such as the enhanced accumulation of CaCO3 at deeper depths after acidification. This overdeepening of CaCO3 accumulation led to the idea that an increased supply of alkalinity to the oceans, via amplified weathering of continental rocks, must accompany chemical compensation. Here we discuss an alternative: that changes to calcification, a biological process dependent on environmental conditions, can enhance and modify chemical compensation and account for overdeepening. Using a simplified ocean box model with both constant and variable calcification, we show that even modest drops in calcification can lead to appreciable long-term alkalinity build-up in the oceans and, thus, create overdeepening; we term this latter effect biological compensation. The chemical and biological manifestations of compensation differ in terms of controls, timing and effects, which we illustrate with model results. To better predict oceanic evolution during the Anthropocene and improve the interpretation of the palaeoceanographic record, it is necessary to better understand biological compensation.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Calcium isotope ratios of malformed foraminifera reveal biocalcification stress preceded Oceanic Anoxic Event 2
Communications Earth & Environment Open Access 13 December 2022
-
Eocene emergence of highly calcifying coccolithophores despite declining atmospheric CO2
Nature Geoscience Open Access 01 September 2022
-
Aragonite dissolution protects calcite at the seafloor
Nature Communications Open Access 01 March 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Data availability
The authors declare that the data supporting the findings of this study are available within the article and its supplementary information files and further information are available from the corresponding author upon request.
References
Falkowski, P. et al. The global carbon cycle: a test of our knowledge of earth as a system. Science 290, 291–296 (2000).
Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics (Princeton Univ. Press, Princeton, 2006).
Morse, J. W. & Mackenzie, F. T. Geochemistry of Sedimentary Carbonates (Elsevier, Amsterdam, 1990).
Zeebe, R. E. & Westbroek, P. A. A simple model for the CaCO3 saturation state of the ocean: the “strangelove”, the “Neritan”, and the “Cretan” ocean. Geochem. Geophys. Geosyst. 4, 1104 (2003).
Andersson, A. J., Mackenzie, F. T. & Ver, L. M. Solution of shallow-water carbonates: an insignificant buffer against rising atmospheric CO2. Geology 31, 513–516 (2003).
Morse, J. W., Andersson, A. J. & Mackenzie, F. T. Initial responses of carbonate shelf sediments to rising atmospheric pCO2 and “ocean acidification”: role of high Mg-calcites. Geochim. Cosmochim. Acta 70, 5814–5830 (2006).
Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).
IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability — Part A: Global and Sectoral Aspects (eds Pörtner, H. O. et al.) 411–484 (Cambridge Univ. Press, 2014).
Riebesell, U. et al. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407, 364–367 (2000).
Ridgwell, A., Zondervan, I., Hargreaves, J. C., Bijma, J. & Lenton, T. M. Assessing the potential long-term increase of oceanic fossil fuel CO2 uptake due to CO2-calcification feedback. Biogeosciences 4, 481–492 (2007).
Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2008).
Iglesias-Rodriguez, M. D. et al. Phytoplankton calcification in a high-CO2 world. Science 320, 336–340 (2008).
Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).
Lohbeck, K. T., Riebesell, U. & Reusch, T. B. H. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 5, 346–351 (2012).
Beaufort, L. et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476, 80–83 (2011).
Eyre, B. D. et al. Coral reefs will transition to net dissolving before end of century. Science 359, 908–911 (2018).
Gibbs, S. J., Bown, P. R., Ridgwell, A., Young, J. R., Poulton, A. J. & O’Dea, S. A. Ocean warming, not acidification, controlled coccolithophore response during past greenhouse climate change. Geology 44, 59–62 (2016).
Frieling, J. et al. Extreme warmth and heat-stressed plankton in the tropics during the Paleocene-Eocene thermal maximum. Sci. Adv. 3, e1600891 (2017).
Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).
Barker, S. & Elderfield, H. Foraminiferal calcification response to glacial–interglacial changes in atmospheric CO2. Science 297, 833–836 (2002).
Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058 (2012).
Henehan, M. J. et al. Size-dependent response of foraminiferal calcification to seawater carbonate chemistry. Biogeosciences 14, 3287–3308 (2017).
Gibbs, S. J., Stoll, H. M., Brown, P. R. & Bralower, T. J. Ocean acidification and surface water carbonate production across the Paleocene-Eocene thermal maximum. Earth Planet. Sci. Lett. 295, 583–592 (2010).
Aze, T. et al. Extreme warming of tropical waters during the Paleocene–Eocene thermal maximum. Geology 42, 739–742 (2014).
Berner, E. K. & Berner, R. A. Global Environment: Water, Air and Geochemical Cycles (Princeton Univ. Press, Princeton, 2012).
Caldeira, K. & Rampino, M. R. Aftermath of the end-Cretaceous mass extinction: possible biogeochemical stabilization of the carbon cycle and climate. Paleoceanography 8, 515–525 (1993).
Sigman, D. M., McCorkle, D. C. & Martin, W. R. The calcite lysocline as a constraint on glacial/interglacial low-latitude production changes. Glob. Biogeochem. Cycles 12, 409–427 (1998).
Boudreau, B. P., Middelburg, J. J., Hofmann, A. & Meysman, F. J. R. Ongoing transients in carbonate compensation. Glob. Biogeochem. Cycles 24, GB4010 (2010).
Luo, Y. & Boudreau, B. P. Future acidification of marginal seas: a comparative study of the Japan/East Sea and the South China Sea. Geophys. Res. Lett. 43, 6393–6401 (2016).
Zhang, H. & Cao, L. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification. Sci. Rep. 6, 20284 (2016).
Zachos, J. C. et al. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308, 1611–1615 (2005).
Luo, Y., Boudreau, B. P., Dickens, G. R., Sluijs, A. & Middelburg, J. J. An alternative model for CaCO3 over-shooting during the PETM: biological carbonate compensation. Earth Planet. Sci. Lett. 453, 223–233 (2016).
Lenton, T. M. & Britton, C. Enhanced carbonate and silicate weathering accelerates recovery from fossil fuel CO2 perturbations. Glob. Biogeochem. Cycles 20, GB3009 (2006).
Ilyina, T. & Zeebe, R. E. Detection and projection of carbonate dissolution in the water column and deep-sea sediments due to ocean acidification. Geophys. Res. Lett. 39, L06606 (2012).
Monteiro, F. M. et al. Why marine phytoplankton calcify? Sci. Adv. 2, e1501822 (2016).
Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
Penman, D. E. et al. An abyssal carbonate compensation depth overshoot in the aftermath of the Palaeocene-Eocene thermal maximum. Nat. Geosci. 9, 575–580 (2016).
Cui, Y. et al. Slow release of fossil carbon during the Paleocene-Eocene thermal maximum. Nat. Geosci. 4, 481–485 (2011).
Zeebe, R. E. & Zachos, J. C. Long-term legacy of massive carbon input to the Earth system: anthropocene vs. Eocene. Phil. Trans. R. Soc. A371, 20120006 (2013).
Tyrrell, T., Merico, A. & Armstrong McKay, D. I. Severity of ocean acidification following the end-Cretaceous asteroid impact. Proc. Nat. Acad. Sci. USA 112, 6556–6561 (2015).
D’Hondt, S. Consequences of the Cretaceous/Paleogene mass extinction for marine systems. Ann. Rev. Ecol. Evol. Syst. 36, 295–317 (2005).
Henehan, M. J., Hull, P. M., Penman, D. E., Rae, J. W. B. & Schmidt, D. N. Biogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study. Phil. Trans. R. Soc. B 371, 20150510 (2016).
Jansen, H., Zeebe, R. E. & Wolf-Gladrow, D. A. Modeling the dissolution of settling CaCO3 in the ocean. Glob. Biogeochem. Cycles https://doi.org/10.1029/2000GB001279 (2002).
Tyrrell, T. & Zeebe, R. E. History of carbonate ion concentration over the last 100 million years. Geochim. Cosmochim. Acta 68, 3521–3530 (2004).
Boudreau, B. P., Middelburg, J. J. & Meysman, F. J. R. Carbonate compensation dynamics. Geophys. Res. Lett. 37, L03603 (2010).
Mucci, A. The solubility of calcite and aragonite in seawater at various salinities, temperatures and one atmosphere total pressure. Am. J. Sci. 283, 780–799 (1983).
Boudreau, B. P. Carbonate dissolution rates at the deep ocean floor. Geophys. Res. Lett. 40, 744–748 (2013).
Boudreau, B. P. & Jorgensen, B. B. The Benthic Boundary Layer: Transport Processes and Biogeochemistry (Oxford Univ. Press, Oxford, 2001).
Sulpis, O., Lix, C., Mucci, A. & Boudreau, B. P. Calcite dissolution kinetics at the sediment-water interface in natural seawater. Mar. Chem. 195, 70–83 (2017).
Kolla, V., Bé, A. W. H. & Biscaye, P. E. Calcium carbonate distribution in the surface sediments of the Indian Ocean. J. Geophys. Res. 81, 2605–2616 (1976).
Berger, W. H. Planktonic foraminifera: selective solution and paleoclimatic interpretation. Deep Sea Res. 15, 31–43 (1968).
Morse, J. W. & Berner, R. A. Dissolution kinetics of calcium carbonate in sea water: II. A kinetic origin for the lysocline. Am. J. Sci. 272, 840–851 (1972).
Zeebe, R. E. & Wolf-Gladrow, D. A. CO 2 in Seawater: Equilibrium, Kinetics, Isotopes Vol. 65 (Elsevier, Amsterdam, 2001).
Archer, D. A data-driven model of the global calcite lysocline. Glob. Biogeochem. Cycles 10, 511–526 (1996).
Emelyanov, E. M. The Barrier Zones in the Ocean (Springer-Verlag, New York, 2005).
Pälike, H. et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488, 609–614 (2012).
Berger, W. H. Planktonic Foraminifera: selective solution and the lysocline. Mar. Geol. 8, 111–138 (1970).
Acknowledgements
B.P.B. gratefully acknowledges funding from NSERC and the Killam Trust. J.J.M. was supported by the Netherlands Earth System Science Center, as was a sabbatical stay in Utrecht by B.P.B.
Author information
Authors and Affiliations
Contributions
B.P.B. provided the concept for the paper, ran the code and co-wrote the paper. J.J.M. researched various aspects of the problem and co-wrote the paper. Y.L. wrote the code and contributed to the writing of the paper. Address scientific requests and inquiries to B.P.B. (bernie.boudreau@dal.ca), and questions regarding the code can be directed to Y.L. (luoyiming@mail.sysu.edu.cn).
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figures 1–4
Supplementary Code
Fortran code: code for the calculation of the CO2 compensation system.
Rights and permissions
About this article
Cite this article
Boudreau, B.P., Middelburg, J.J. & Luo, Y. The role of calcification in carbonate compensation. Nature Geosci 11, 894–900 (2018). https://doi.org/10.1038/s41561-018-0259-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41561-018-0259-5
This article is cited by
-
Abrupt episode of mid-Cretaceous ocean acidification triggered by massive volcanism
Nature Geoscience (2023)
-
Eocene emergence of highly calcifying coccolithophores despite declining atmospheric CO2
Nature Geoscience (2022)
-
Aragonite dissolution protects calcite at the seafloor
Nature Communications (2022)
-
Calcium isotope ratios of malformed foraminifera reveal biocalcification stress preceded Oceanic Anoxic Event 2
Communications Earth & Environment (2022)
-
Calcification of planktonic foraminifer Neogloboquadrina pachyderma (sinistral) controlled by seawater temperature rather than ocean acidification in the Antarctic Zone of modern Sothern Ocean
Science China Earth Sciences (2022)