In the classical concept, a hotspot track is a line of volcanics formed as a plate moves over a stationary mantle plume. Defying this concept, intraplate volcanism in Greenland and the North Atlantic region occurred simultaneously over a wide area, particularly around 60 million years ago, showing no resemblance to a hotspot track. Here, we show that most of this volcanism can nonetheless be explained solely by the Iceland plume interacting with seafloor spreading ridges, global mantle flow and a lithosphere (the outermost rigid layer of the Earth) with strongly variable thickness. An east–west corridor of thinned lithosphere across central Greenland, as inferred from new, highly resolved tomographic images, could have formed as Greenland moved westward over the Iceland plume between 90 and 60 million years ago. Our numerical geodynamic model demonstrates how plume material may have accumulated in this corridor and in areas east and west of Greenland. Simultaneous plume-related volcanic activities starting about 62 million years ago on either side of Greenland could occur where and when the lithosphere was thin enough due to continental rifting and seafloor spreading, possibly long after the plume reached the base of the lithosphere.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

All of the input files that are required to reproduce this study are available upon request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Pedersen, A., Larsen, L. M., Riisager, P. & Dueholm, K. S. in The North Atlantic Igneous Province: Stratigraphy, Tectonics, Volcanic and Magmatic Processes Spec. Publ. Vol. 197 (eds Jolley, D. W, & Bell, B. R.) 157–181 (Geological Society, London, 2002).

  2. 2.

    Stuart, F. M., Solveigh, L.-E., Fitton, J. G. & Ellam, R. M. High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 424, 57–59 (2003).

  3. 3.

    Torsvik, T. H., Mosar, J. & Eide, E. A. Cretaceous–Tertiary geodynamics: a North Atlantic exercise. Geophys. J. Int. 146, 850–866 (2001).

  4. 4.

    Graham, D. W. et al. Helium isotope composition of the early Iceland mantle plume inferred from the Tertiary picrites of West Greenland. Earth Planet. Sci. Lett. 160, 241–255 (1998).

  5. 5.

    Marty, B., Upton, B. G. J. & Ellam, R. M. Helium isotopes in early Tertiary basalts, northeast Greenland: evidence for 58 Ma plume activity in the North Atlantic–Iceland volcanic province. Geology 26, 407–410 (1998).

  6. 6.

    Stuart, F. M., Ellam, R. M., Harrop, P. J., Fitton, J. G. & Bell, B. R. Constraints on mantle plumes from the helium isotopic composition of basalts from the British Tertiary Igneous Province. Earth Planet. Sci. Lett. 177, 273–285 (2000).

  7. 7.

    Richards, M. A., Duncan, R. A. & Courtillot, V. E. Flood basalts and hot-spot tracks: plume heads and tails. Science 246, 103–107 (1989).

  8. 8.

    Morgan, W. J. Hotspot tracks and the early rifting of the Atlantic. Tectonophysics 94, 123–139 (1983).

  9. 9.

    Gaina, C., Medvedev, S., Torsvik, T. H. & Werner, S. C. 4D Arctic: a glimpse into the structure and evolution of the Arctic in the light of new geophysical maps, plate tectonics and tomographic models. Surv. Geophys. 35, 1095–1122 (2014).

  10. 10.

    Rickers, F., Fichtner, A. & Trampert, J. The Iceland–Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: evidence from full-waveform inversion. Earth Planet. Sci. Lett. 367, 39–51 (2013).

  11. 11.

    Ganerød, M. et al. The North Atlantic Igneous province reconstructed and its relation to the plume generation zone: the Antrim Lava Group revisited. Geophys. J. Int. 182, 183–202 (2010).

  12. 12.

    Steinberger, B. & Torsvik, T. H. A geodynamic models of plumes from the margins of large low shear velocity provinces. Geochem. Geophys. Geosyst. 13, Q01W09 (2012).

  13. 13.

    Foulger, G. R. & Anderson, D. L. A cool model for the Iceland hotspot. J. Volcanol. Geotherm. Res. 141, 1–22 (2005).

  14. 14.

    Korenaga, J. Mantle mixing and continental breakup magmatism. Earth Planet. Sci. Lett. 218, 463–473 (2004).

  15. 15.

    Ito, G. & van Keken, P. E. in Treatise on Geophysics: Mantle Dynamics Vol. 7 (eds Schubert, G. & Bercovici, D.) 371–435 (Elsevier, Amsterdam, 2007).

  16. 16.

    Meyer, R., van Wijk, J. & Gernigon, L. North Atlantic Igneous Province: A Review of Models for its Formation GSA Spec. Paper 430, 525–552 (Geological Society of America, Boulder, 2007).

  17. 17.

    Wolfe, C. J., Bjarnason, I. T., VanDecar, J. C. & Solomon, S. C. Seismic structure of the Iceland mantle plume. Nature 385, 245–247 (1997).

  18. 18.

    Bijwaard, H. & Spakman, W. Tomographic evidence for a narrow whole mantle plume below Iceland. Earth Planet. Sci. Lett. 166, 121–126 (1999).

  19. 19.

    French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

  20. 20.

    Steinberger, B., Spakman, W., Japsen, P. & Torsvik, T. H. The key role of global solid Earth processes in the late Cenozoic intensification of Greenland glaciation. Terra Nova 27, 1–8 (2015).

  21. 21.

    Morgan, W. J. Rodriguez, Darwin, Amsterdam, a second type of hotspot island. J. Geophys. Res. 83, 5355–5360 (1978).

  22. 22.

    Sleep, N. H. Lateral flow and ponding of starting plume material. J. Geophys. Res. 102, 10001–10012 (1997).

  23. 23.

    Torsvik, T. H. et al. Continental crust beneath southeast Iceland. Proc. Natl Acad. Sci. USA 112, E1818–E1827 (2015).

  24. 24.

    Mihálffy, P., Steinberger, B. & Schmeling, H. The effect of the large-scale mantle flow field on the Iceland hotspot track. Tectonophysics 447, 5–18 (2008).

  25. 25.

    Bjarnason, I. T., Silver, P. G., Rümpker, G. & Solomon, S. C. Shear wave splitting across the Iceland hot spot: results from the ICEMELT experiment. J. Geophys. Res. 107, 2382 (2002).

  26. 26.

    Ito, G., Dunn, R. & Li, A. The origin of shear wave splitting beneath Iceland. Geophys. J. Int. 201, 1297–1312 (2015).

  27. 27.

    Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans. J. Geophys. Res. 117, B09101 (2012).

  28. 28.

    O’Neill, C., Müller, R. D. & Steinberger, B. On the uncertainties in hotspot reconstructions, and the significance of moving hotspot reference frames. Geochem. Geophys. Geosyst. 6, Q04003 (2005).

  29. 29.

    Lawver, L. A. & Müller, R. D. Iceland hotspot track. Geology 22, 311–314 (1994).

  30. 30.

    Vink, G. E. A hotspot model for Iceland and the Vøring Plateau. J. Geophys. Res. 89, 9949–9959 (1984).

  31. 31.

    Morgan, W. J. in The Sea: The Oceanic Lithosphere Vol. 7 (ed. Emiliani, C.) 443–487 (Wiley, New York, 1981).

  32. 32.

    Lebedev, S., Schaeffer, A. J., Fullea, J. & Pease, V. in Circum-Arctic Lithosphere Evolution Spec. Publ. Vol. 460 (eds Pease, V. & Coakley, B.) 419–440 (Geological Society, London, 2018).

  33. 33.

    Torsvik, T. H. & Cocks, L. R. M. Earth History and Paleogeography (Cambridge Univ. Press, Cambridge, 2017).

  34. 34.

    White, R. & McKenzie, D. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res. 94, 7685–7729 (1989).

  35. 35.

    Gassmöller, R., Dannberg, J., Bredow, E., Steinberger, B. & Torsvik, T. H. Major influence of plume–ridge interaction, lithosphere thickness variations and global mantle flow on hotspot volcanism—the example of Tristan. Geochem. Geophys. Geosyst. 17, 1454–1479 (2016).

  36. 36.

    Bredow, E., Steinberger, B., Gassmöller, R. & Dannberg, J. How plume–ridge interaction shapes the crustal thickness pattern of the Réunion hotspot track. Geochem. Geophys. Geosyst. 18, 2930–2948 (2017).

  37. 37.

    Yang, T. & Leng, W. Dynamics of hidden hotspot tracks beneath the continental lithosphere. Earth Planet. Sci. Lett. 401, 294–300 (2014).

  38. 38.

    Yuan, X. et al. Seismic structure of the lithosphere beneath NW Namibia: impact of the Tristan da Cunha mantle plume. Geochem. Geophys. Geosys. 18, 125–141 (2017).

  39. 39.

    Beniest, A., Koptev, A., Leroy, S., Sassi, W. & Guichet, X. Two-branch break-up systems by a single mantle plume: insights from numerical modeling. Geophys. Res. Lett. 44, 9589–9597 (2017).

  40. 40.

    Rogozhina, I. et al. Melting at the base of the Greenland ice sheet explained by Iceland hotspot history. Nat. Geosci. 9, 366–369 (2016).

  41. 41.

    Jakovlev, A. V., Bushenkova, N. A., Koulakov, I. Y. & Dobretsov, N. L. Structure of the upper mantle in the circum-Arctic region from regional seismic tomography. Russ. Geol. Geophys. 22, 963–971 (2012).

  42. 42.

    Lekic, V., Cottaar, S., Dziewonski, A. & Romanowicz, B. Cluster analysis of global lower mantle tomography: a new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357–358, 68–77 (2012).

  43. 43.

    Holbrook, W. S. et al. Mantle thermal structure and active upwelling during continental breakup in the North Atlantic. Earth Planet. Sci. Lett. 190, 251–266 (2001).

  44. 44.

    Smallwood, J. R., Staples, R. K., Richardson, K. R. & White, R. S. Crust generated above the Iceland mantle plume: from continental rift to oceanic spreading center. J. Geophys. Res. 104, 22885–22902 (1999).

  45. 45.

    Storey, M., Duncan, R. A. & Tegner, C. Timing and duration of volcanism in the North Atlantic Igneous Province: implications for geodynamics and links to the Iceland hotspot. Chem. Geol. 241, 264–281 (2007).

  46. 46.

    Schoonman, C. M., White, N. J. & Pritchard, D. Radial viscous fingering of hot asthenosphere within the Icelandic plume beneath the North Atlantic Ocean. Earth Planet. Sci. Lett. 468, 51–61 (2017).

  47. 47.

    Abdelmalak, M. M. et al. The ocean–continent transition in the mid-Norwegian margin: Insight from seismic data and an onshore Caledonian field analogue. Geology 43, 1011–1014 (2015).

  48. 48.

    Torsvik, T. H., Steinberger, B., Gurnis, M. & Gaina, C. Plate tectonics and net lithosphere rotation over the past 150 My. Earth Planet. Sci. Lett. 291, 106–112 (2010).

  49. 49.

    Pourpoint, M., Anandakrishnan, S. A. & Ammon, C. J. High-resolution Rayleigh wave group velocity variation beneath Greenland. J. Geophys. Res. 123, 1516–1539 (2018).

  50. 50.

    Mordret, A. Uncovering the Iceland hotspot track beneath Greenland. J. Geophys. Res. 123, 4922–4941 (2018).

  51. 51.

    Bangerth, W. et al. ASPECT: Advanced Solver for Problems in Earth’s Convection, User Manual (2017); https://doi.org/10.6084/m9.figshare.4865333

  52. 52.

    Kronbichler, M., Heister, T. & Bangerth, W. High accuracy mantle convection simulation through modern numerical methods. Geophys. J. Int. 191, 12–29 (2012).

  53. 53.

    Putirka, K. Excess temperatures at ocean islands: implications for mantle layering and convection. Geology 36, 283–286 (2008).

  54. 54.

    Sleep, N. Hotspots and mantle plumes: some phenomenology. J. Geophys. Res. 95, 6715–6736 (1990).

  55. 55.

    Schilling, J.-G. Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges. Nature 352, 397–403 (1991).

  56. 56.

    Spice, H. E., Fitton, J. G. & Kirstein, L. A. Temperature fluctuation of the Iceland mantle plume through time. Geochem. Geophys. Geosyst. 17, 243–254 (2016).

  57. 57.

    Hager, B. H. & O’Connell, R. J. Kinematic models of large-scale flow in the Earth’s mantle. J. Geophys. Res. 84, 1031–1048 (1979).

  58. 58.

    Hager, B. H. & O’Connell, R. J. A simple global model of plate dynamics and mantle convection. J. Geophys. Res. 86, 4843–4867 (1981).

  59. 59.

    Steinberger, B. & O’Connell, R. J. Advection of plumes in mantle flow; implications on hotspot motion, mantle viscosity and plume distribution. Geophys. J. Int. 132, 412–434 (1998).

  60. 60.

    Steinberger, B. Topography caused by mantle density variations: observation-based estimates and models derived from tomography and lithosphere thickness. Geophys. J. Int. 205, 604–621 (2016).

  61. 61.

    Schaeffer, A. J. & Lebedev, S. Global shear speed structure of the upper mantle and transition zone. Geophys. J. Int. 194, 417–449 (2013).

  62. 62.

    Grand, S. P. Mantle shear-wave tomography and the fate of subducted slabs. Phil. Trans. R. Soc. Lond. A 360, 2475–2491 (2002).

  63. 63.

    Steinberger, B., Sutherland, R. & O’Connell, R. J. Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature 430, 167–173 (2004).

  64. 64.

    Becker, T. W. & Boschi, L. A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst. 3, 2001GC000168 (2002).

  65. 65.

    Steinberger, B. & Calderwood, A. Models of large-scale viscous flow in the Earth’s mantle with constraints from mineral physics and surface observations. Geophys. J. Int. 167, 1461–1481 (2006).

  66. 66.

    Katz, R. F., Spiegelman, M. & Langmuir, C. H. A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4, 1073 (2003).

  67. 67.

    Schaeffer, A. J., Lebedev, S. & Becker, T. W. Azimuthal seismic anisotropy in the Earth’s upper mantle and the thickness of tectonic plates. Geophys. J. Int. 207, 901–933 (2016).

  68. 68.

    Schaeffer, A. J. & Lebedev, S. Imaging the North American continent using waveform inversion of global and USArray data. Earth Planet. Sci. Lett. 402, 26–41 (2014).

  69. 69.

    Lebedev, S., Nolet, G., Meier, T. & van der Hilst, R. D. Automated multimode inversion of surface and S waveforms. Geophys. J. Int. 162, 951–964 (2005).

  70. 70.

    Bassin, C., Laske, G. & Masters, G. The current limits of resolution for surface wave tomography in North America. EOS, Trans Am. Geophys. Un. 81, F897 (2000).

  71. 71.

    Kennett, B. L. N., Engdahl, E. R. & Buland, R. Constraints on seismic velocities in the Earth from travel times. Geophys. J. Int. 122, 108–124 (1995).

  72. 72.

    Lebedev, S., Adam, J. M.-C. & Meier, T. Mapping the Moho with seismic surface waves: a review, resolution analysis, and recommended inversion strategies. Tectonophysics 609, 377–394 (2013).

  73. 73.

    Lebedev, S. & van der Hilst, R. D. Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms. Geophys. J. Int. 173, 505–518 (2008).

  74. 74.

    Paige, S. & Saunders, C. C. LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Software 8, 43–71 (1982).

  75. 75.

    Detrick, R. S. & Crough, S. T. Island subsidence, hot spots, and lithospheric thinning. J. Geophys. Res. 83, 1236–1244 (1978).

  76. 76.

    Chu, R., Leng, W., Helmberger, D. V. & Gurnis, M. Hidden hotspot track beneath the eastern United States. Nat. Geosci. 6, 963–966 (2013).

  77. 77.

    Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 9, Q04006 (2008).

Download references


The geodynamic models were computed with the open-source software ASPECT (http://aspect.dealii.org) and performed with resources provided by the North-German Supercomputing Alliance (HLRN). The authors thank J. Dannberg, S. Williams, N. White and I. Bjarnason for comments and suggestions. This publication has emanated from research supported in part by research grants from Science Foundation Ireland (SFI) under grant nos. 13/CDA/2192 and 13/RC/2092, co-funded under the European Regional Development Fund and by iCRAG industry partners. B.S. and T.H.T. also acknowledge support from the Research Council of Norway, through its Centre of Excellence scheme, project no. 223272 (CEED).

Author information

Author notes

    • Eva Bredow

    Present address: Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany


  1. Section 2.5 Geodynamic Modelling, GFZ German Research Centre for Geosciences, Potsdam, Germany

    • Bernhard Steinberger
    • , Eva Bredow
    •  & Trond H. Torsvik
  2. Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, Norway

    • Bernhard Steinberger
    •  & Trond H. Torsvik
  3. Dublin Institute for Advanced Studies, School of Cosmic Physics, Geophysics Section, Dublin, Ireland

    • Sergei Lebedev
    •  & Andrew Schaeffer
  4. Pacific Geoscience Centre, Geological Survey of Canada, Sidney, British Columbia, Canada

    • Andrew Schaeffer
  5. Department of Earth Sciences, University of Ottawa, Ottawa, Canada

    • Andrew Schaeffer
  6. Geological Survey of Norway (NGU), Trondheim, Norway

    • Trond H. Torsvik
  7. School of Geosciences, University of the Witwatersrand, Wits, South Africa

    • Trond H. Torsvik


  1. Search for Bernhard Steinberger in:

  2. Search for Eva Bredow in:

  3. Search for Sergei Lebedev in:

  4. Search for Andrew Schaeffer in:

  5. Search for Trond H. Torsvik in:


S.L. and B.S. conceived the paper. B.S. wrote the paper, with help from all other authors. E.B. performed the computations with ASPECT. A.S. and S.L. provided tomography and lithosphere thickness models. T.H.T. provided plate reconstructions and data on the distribution of volcanics. All authors jointly contributed to discussions.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Bernhard Steinberger.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–5.

  2. Supplementary Video

    Supplementary video.

About this article

Publication history