Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

CO2 evasion along streams driven by groundwater inputs and geomorphic controls

Abstract

Headwaters are hotspots of carbon dioxide (CO2) evasion from rivers. While emerging evidence suggests that groundwater contributes disproportionately to CO2 in headwater streams, the processes of CO2 delivery to streams and subsequent evasion to the atmosphere remain largely unknown. Here we show the variability of CO2 input and evasion fluxes based on coupled measurements of dissolved CO2 along streams and in adjacent groundwater from two headwater catchments of the tropical and temperate zones. We find that the processes can be highly localized in both space and time. Spatially, they are significantly influenced by heterogeneities in the subsurface and stream landscape; temporally, they predominately occur during the transient activation of connected subsurface water flows. We highlight sharp increases and decreases in the stream CO2 flux, and suggest that current models fail to capture the true magnitude of CO2 evasion. The high spatial and temporal variability of CO2 input from groundwater and evasion to the atmosphere makes accurate assessment of CO2 evasion fluxes difficult, and will require a collaborative effort by catchment hydrologists and aquatic ecologists to fully understand the contribution of groundwater to stream CO2 emissions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual diagram of the subsurface and stream heterogeneities contributing to CO2 variations in headwater streams.
Fig. 2: Illustration of CO2 evasion within short distance of subsurface inflows.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 172–185 (2007).

    Article  Google Scholar 

  2. Devol, A. H., Quay, P. D., Richey, J. E. & Martinelli, L. A. The role of gas exchange in the inorganic carbon, oxygen, and 222Rn budgets of the Amazon River. Limnol. Oceanogr. 32, 235–248 (1987).

    Article  Google Scholar 

  3. Kling, G. W., Kipphut, G. W. & Miller, M. C. Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251, 298–301 (1991).

    Article  Google Scholar 

  4. Butman, D. & Raymond, P. A. Significant efflux of carbon dioxide from streams and rivers in the United States. Nat. Geosci. 4, 839–842 (2011).

    Article  Google Scholar 

  5. Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article  Google Scholar 

  6. Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P. & Regnier, P. A. G. Spatial patterns in CO2 evasion from the global river network. Global Biogeochem. Cycles 29, 534–554 (2015).

    Article  Google Scholar 

  7. Marx, A. et al. A review of CO2 and associated carbon dynamics in headwater streams: a global perspective. Rev. Geophys. 55, 560–585 (2017).

    Article  Google Scholar 

  8. Butman, D. et al. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting. Proc. Natl Acad. Sci. USA 113, 58–63 (2016).

    Article  Google Scholar 

  9. Sawakuchi, H. O. et al. Carbon dioxide emissions along the Lower Amazon River. Front. Mar. Sci. 4, 76 (2017).

    Article  Google Scholar 

  10. Le Quéré, C. et al. Global carbon budget 2016. Earth Syst. Sci. Data 8, 605–649 (2016).

    Article  Google Scholar 

  11. Resplandy, L. et al. Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport. Nat. Geosci. 11, 504–509 (2018).

    Article  Google Scholar 

  12. Peter, H. et al. Scales and drivers of temporal pCO2 dynamics in an Alpine stream. J. Geophys. Res. Biogeosci. 119, 1078–1091 (2014).

    Article  Google Scholar 

  13. Crawford, J. T. et al. CO2 and CH4 emissions from streams in a lake-rich landscape: patterns, controls, and regional significance. Global Biogeochem. Cycles 28, 197–210 (2014).

    Article  Google Scholar 

  14. Leith, F. I. et al. Carbon dioxide transport across the hillslope-riparian-stream continuum in a boreal headwater catchment. Biogeosciences 12, 1881–1892 (2015).

    Article  Google Scholar 

  15. Looman, A. et al. Carbon cycling and exports over diel and flood-recovery timescales in a subtropical rainforest headwater stream. Sci. Total Environ. 550, 645–657 (2016).

    Article  Google Scholar 

  16. Schelker, J., Singer, G. A., Ulseth, A. J., Hengsberger, S. & Battin, T. J. CO2 evasion from a steep, high gradient stream network: importance of seasonal and diurnal variation in aquatic pCO2 and gas transfer. Limnol. Oceanogr. 61, 1826–1838 (2016).

    Article  Google Scholar 

  17. Winterdahl, M. et al. Decoupling of carbon dioxide and dissolved organic carbon in boreal headwater streams. J. Geophys. Res. Biogeosci. 121, 2630–2651 (2016).

    Article  Google Scholar 

  18. Rasilo, T., Hutchins, R. H. S., Ruiz-González, C. & del Giorgio, P. A. Transport and transformation of soil-derived CO2, CH4 and DOC sustain CO2 supersaturation in small boreal streams. Sci. Total Environ. 579, 902–912 (2017).

    Article  Google Scholar 

  19. Crawford, J. T., Stanley, E. H., Dornblaser, M. M. & Striegl, R. G. CO2 time series patterns in contrasting headwater streams of North America. Aquat. Sci. 79, 473–486 (2017).

    Article  Google Scholar 

  20. Boodoo, K. S., Trauth, N., Schmidt, C., Schelker, J. & Battin, T. J. Gravel bars are sites of increased CO2 outgassing in stream corridors. Sci. Rep. 7, 14401 (2017).

    Article  Google Scholar 

  21. Campeau, A. et al. Stable carbon isotopes reveal soil-stream DIC linkages in contrasting headwater catchments. J. Geophys. Res. Biogeosci. 123, 149–167 (2018).

    Article  Google Scholar 

  22. Deirmendjian, L. & Abril, G. Carbon dioxide degassing at the groundwater-stream-atmosphere interface: isotopic equilibration and hydrological mass balance in a sandy watershed. J. Hydrol. 558, 129–143 (2018).

    Article  Google Scholar 

  23. Johnson, M. S. et al. CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys. Res. Lett. 35, L17401 (2008).

    Article  Google Scholar 

  24. Öquist, M. G., Wallin, M., Seibert, J., Bishop, K. & Laudon, H. Dissolved inorganic carbon export across the soil/stream interface and its fate in a boreal headwater stream. Environ. Sci. Technol. 43, 7364–7369 (2009).

    Article  Google Scholar 

  25. Hope, D., Palmer, S. M., Billett, M. F. & Dawson, J. J. C. Variations in dissolved CO2 and CH4 in a first-order stream and catchment: an investigation of soil–stream linkages. Hydrol. Process. 18, 3255–3275 (2004).

    Article  Google Scholar 

  26. Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).

    Article  Google Scholar 

  27. Hall, R. O., Tank, J. L., Baker, M. A., Rosi-Marshall, E. J. & Hotchkiss, E. R. Metabolism, gas exchange, and carbon spiraling in rivers. Ecosystems 19, 73–86 (2016).

    Article  Google Scholar 

  28. Stets, E. G. et al. Carbonate buffering and metabolic controls on carbon dioxide in rivers. Global Biogeochem. Cycles 31, 663–677 (2017).

    Article  Google Scholar 

  29. Hotchkiss, E. R. et al. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat. Geosci. 8, 696–699 (2015).

    Article  Google Scholar 

  30. Campeau, A. et al. Multiple sources and sinks of dissolved inorganic carbon across Swedish streams, refocusing the lens of stable C isotopes. Sci. Rep. 7, 9158 (2017).

    Article  Google Scholar 

  31. Winter, T. C. The role of ground water in generating streamflow in headwater areas and in maintaining base flow. J. Am. Water Resour. Assoc. 43, 15–25 (2007).

    Article  Google Scholar 

  32. Sklash, M. G. & Farvolden, R. N. The role of groundwater in storm runoff. J. Hydrol. 43, 45–65 (1979).

    Article  Google Scholar 

  33. Corson-Rikert, H. A., Wondzell, S. M., Haggerty, R. & Santelmann, M. V. Carbon dynamics in the hyporheic zone of a headwater mountain stream in the Cascade Mountains, Oregon. Water Resour. Res. 52, 7556–7576 (2016).

    Article  Google Scholar 

  34. McDonnell, J. J. A rationale for old water discharge through macropores in a steep, humid catchment. Water Resour. Res. 26, 2821–2832 (1990).

    Article  Google Scholar 

  35. Haria, A. H. & Shand, P. Evidence for deep sub-surface flow routing in forested upland Wales: implications for contaminant transport and stream flow generation. Hydrol. Earth Syst. Sci. 8, 334–344 (2004).

    Article  Google Scholar 

  36. Tromp-van Meerveld, H. J., Peters, N. E. & McDonnell, J. J. Effect of bedrock permeability on subsurface stormflow and the water balance of a trenched hillslope at the Panola Mountain Research Watershed, Georgia, USA. Hydrol. Process. 21, 750–769 (2007).

    Article  Google Scholar 

  37. Beven, K. & Germann, P. Macropores and water flow in soils revisited. Water Resour. Res. 49, 3071–3092 (2013).

    Article  Google Scholar 

  38. Uhlenbrook, S. Catchment hydrology—a science in which all processes are preferential. Hydrol. Process. 20, 3581–3585 (2006).

    Article  Google Scholar 

  39. Weiler, M. Macropores and preferential flow—a love-hate relationship. Hydrol. Proess. 31, 15–19 (2017).

    Article  Google Scholar 

  40. Raymond, P. A. et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol. Oceanogr. Fluids Environ. 2, 41–53 (2012).

    Article  Google Scholar 

  41. Crawford, J. T., Dornblaser, M. M., Stanley, E. H., Clow, D. W. & Striegl, R. G. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes. J. Geophys. Res. Biogeosci. 120, 952–964 (2015).

    Article  Google Scholar 

  42. Tromp-van Meerveld, H. J. & McDonnell, J. J. Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis. Water Resour. Res. 42, W02411 (2006).

    Google Scholar 

  43. Mast, M. A., Wickland, K. P., Striegl, R. T. & Clow, D. W. Winter fluxes of CO2 and CH4 from subalpine soils in Rocky Mountain National Park, Colorado. Global Biogeochem. Cycles 12, 607–620 (1998).

    Article  Google Scholar 

  44. Johnson, M. S., Weiler, M., Couto, E. G., Riha, S. J. & Lehmann, J. Storm pulses of dissolved CO2 in a forested headwater Amazonian stream explored using hydrograph separation. Water Resour. Res. 43, W11201 (2007).

    Google Scholar 

  45. Cook, P. G. Estimating groundwater discharge to rivers from river chemistry surveys. Hydrol. Process. 27, 3694–3707 (2013).

    Article  Google Scholar 

  46. Briggs, M. A., Lautz, L. K. & McKenzie, J. M. A comparison of fibre-optic distributed temperature sensing to traditional methods of evaluating groundwater inflow to streams. Hydrol. Process. 26, 1277–1290 (2012).

    Article  Google Scholar 

  47. Briggs, M. A., Lautz, L. K., McKenzie, J. M., Gordon, R. P. & Hare. D. K. Using high‐resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux. Water Resour. Res. 48, (2012).

  48. Song, C. et al. Continental-scale decrease in net primary productivity in streams due to climate warming. Nat. Geosci. 11, 415–420 (2018).

    Article  Google Scholar 

  49. Parsekian, A. D., Singha, K., Minsley, B. J., Holbrook, W. S. & Slater, L. Multiscale geophysical imaging of the critical zone. Rev. Geophys. 53, 1–26 (2015).

    Article  Google Scholar 

  50. Binley, A. et al. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour. Res. 51, 3837–3866 (2015).

    Article  Google Scholar 

  51. van Geldern, R. et al. Field-based stable isotope analysis of carbon dioxide by mid-infrared laser spectroscopy for carbon capture and storage monitoring. Anal. Chem. 86, 12191–12198 (2014).

    Article  Google Scholar 

  52. Birkel, C., Soulsby, C., Tetzlaff, D., Dunn, S. & Spezia, L. High-frequency storm event isotope sampling reveals time-variant transit time distributions and influence of diurnal cycles. Hydrol. Process. 26, 308–316 (2012).

    Article  Google Scholar 

  53. Benettin, P. et al. Using SAS functions and high-resolution isotope data to unravel travel time distributions in headwater catchments. Water Resour. Res. 53, 1864–1878 (2017).

    Article  Google Scholar 

  54. Birkel, C. & Soulsby, C. Advancing tracer-aided rainfall–runoff modelling: a review of progress, problems and unrealised potential. Hydrol. Process. 29, 5227–5240 (2015).

    Article  Google Scholar 

  55. McGuire, K. J. et al. Network analysis reveals multiscale controls on streamwater chemistry. Proc. Natl Acad. Sci. USA 111, 7030–7035 (2014).

    Article  Google Scholar 

  56. Gran, G. Determination of the equivalence point in potentiometric titrations. Part II. Analyst 77, 661–671 (1952).

    Article  Google Scholar 

  57. Plummer, L. N. & Busenberg, E. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochim. Cosmochim. Acta 46, 1011–1040 (1982).

    Article  Google Scholar 

  58. Chaplot, V. A. M., Rumpel, C. & Valentin, C. Water erosion impact on soil and carbon redistributions within uplands of Mekong River. Global Biogeochem. Cycles 19, Gb4004 (2005).

    Article  Google Scholar 

  59. Ribolzi, O. et al. From shifting cultivation to teak plantation: effect on overland flow and sediment yield in a montane tropical catchment. Sci. Rep. 7, 3987 (2017).

    Article  Google Scholar 

  60. Marx, A. et al. Groundwater data improve modelling of headwater stream CO2 outgassing with a stable DIC isotope approach. Biogeosciences 15, 3093–3106 (2018).

    Article  Google Scholar 

  61. Šanda, M., Vitvar, T., Kulasová, A., Jankovec, J. & Císlerová, M. Run-off formation in a humid, temperate headwater catchment using a combined hydrological, hydrochemical and isotopic approach (Jizera Mountains, Czech Republic). Hydrol. Process. 28, 3217–3229 (2014).

    Article  Google Scholar 

  62. Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 15, 4399–4981 (2015).

    Article  Google Scholar 

  63. Day, T. J. On the precision of salt dilution gauging. J. Hydrol. 31, 293–306 (1976).

    Article  Google Scholar 

  64. Atkins, M. L., Santos, I. R., Ruiz-Halpern, S. & Maher, D. T. Carbon dioxide dynamics driven by groundwater discharge in a coastal floodplain creek. J. Hydrol. 493, 30–42 (2013).

    Article  Google Scholar 

  65. Tweed, S. et al. Leaky savannas: the significance of lateral carbon fluxes in the seasonal tropics. Hydrol. Process. 30, 873–887 (2016).

    Article  Google Scholar 

  66. Choi, J., Hulseapple, S. M., Conklin, M. H. & Harvey, J. W. Modeling CO2 degassing and pH in a stream–aquifer system. J. Hydrol. 209, 297–310 (1998).

    Article  Google Scholar 

  67. Davidson, E. A., Figueiredo, R. O., Markewitz, D. & Aufdenkampe, A. K. Dissolved CO2 in small catchment streams of eastern Amazonia: a minor pathway of terrestrial carbon loss. J. Geophys. Res. Biogeosci. 115, G04005 (2010).

    Article  Google Scholar 

  68. Lorah, M. M. & Herman, J. S. The chemical evolution of a travertine-depositing stream: geochemical processes and mass transfer reactions. Water Resour. Res. 24, 1541–1552 (1988).

    Article  Google Scholar 

  69. Hoffer-French, K. J. & Herman, J. S. Evaluation of hydrological and biological influences on CO2 fluxes from a karst stream. J. Hydrol. 108, 189–212 (1989).

    Article  Google Scholar 

  70. Chiodini, G. et al. Quantification of deep CO2 fluxes from Central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing. Chem. Geol. 159, 205–222 (1999).

    Article  Google Scholar 

  71. Dawson, J. J. C., Bakewell, C. & Billett, M. F. Is in-stream processing an important control on spatial changes in carbon fluxes in headwater catchments? Sci. Total Environ. 265, 153–167 (2001).

    Article  Google Scholar 

  72. Doctor, D. H. et al. Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream. Hydrol. Process. 22, 2410–2423 (2008).

    Article  Google Scholar 

  73. Piñol, J. & Avila, A. Streamwater pH, alkalinity, pCO2 and discharge relationships in some forested Mediterranean catchments. J. Hydrol. 131, 205–225 (1992).

    Article  Google Scholar 

  74. Dawson, J. J. C., Hope, D., Cresser, M. S. & Billett, M. F. Downstream changes in free carbon dioxide in an upland catchment from Northeastern Scotland. J. Environ. Qual. 24, 699–706 (1995).

    Article  Google Scholar 

  75. van Geldern, R., Schulte, P., Mader, M., Baier, A. & Barth, J. A. C. Spatial and temporal variations of pCO2, dissolved inorganic carbon and stable isotopes along a temperate karstic watercourse. Hydrol. Process. 29, 3423–3440 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the Australian Research Council (DP160101497), the German Research Foundation (project 718 BA 2207/10-1) and the French Institut de Recherche pour le Développement. D.E.B. was partially supported by a NASA Carbon Cycle Science grant (NNX17AI74G). We thank M. S. Johnson, J. B. Shanley and D. H. Doctor for sharing important site information and data, and J. A. C. Barth for insightful comments on an earlier version of the manuscript. This paper also benefited from discussions with M. I. Bird, M. Rudge and R. T. Barnes. We acknowledge the Lao Department of Agricultural Land Management and the M-TROPICS observatory for access to the Houay Pano site, as well as the Czech Geological Survey for access to the Uhlirska site. N. Silvera, K. Latsachack, J.-P. Thiébaut, K. Xayyathip, M. Sanda, J. Jankovec and A. Kulasova are thanked for fieldwork assistance.

Author information

Authors and Affiliations

Authors

Contributions

C.D. conceived the analysis and carried out the literature review and data analysis. D.E.B. contributed to the conceptual development of the manuscript, data analysis and presentation. L.B.H. was involved with discussions particularly during early stages of the manuscript. A.M. collected the ‘Uhlirska’ dataset and contributed to data analysis. O.R. and C.D. collected the ‘Houay Pano’ dataset. C.D. wrote the first draft and all authors edited and commented on various iterations of the manuscript.

Corresponding author

Correspondence to Clément Duvert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Details, Supplementary Figures 1–3, Supplementary Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duvert, C., Butman, D.E., Marx, A. et al. CO2 evasion along streams driven by groundwater inputs and geomorphic controls. Nature Geosci 11, 813–818 (2018). https://doi.org/10.1038/s41561-018-0245-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0245-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing