Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation


The uplift of orogenic plateaus has been assumed to be coincident with the fluvial incision of the gorges that commonly cut plateau margins. The Mekong River, which drains the eastern Qiangtang Terrane and southeastern Tibetan Plateau, is one of the ten largest rivers in the world by water and sediment discharge. When the Mekong River was established remains highly debated—with estimates that range from more than 55 to less than 5 million years ago—despite being a key constraint on the elevation history of the Tibetan Plateau. Here we report low-temperature thermochronology data from river bedrock samples that reveal a phase of rapid downward incision (>700 m) of the Mekong River during the middle Miocene about 17 million years ago, long after the uplift of the central and southeastern Tibetan Plateau. However, this coincides with a period of enhanced East Asian summer monsoon precipitation over the region compared with the early Miocene. Using stream profile modelling, we demonstrate that such an increase in precipitation could have produced the observed incision in the Mekong River. In the absence of an obvious tectonic contribution, we suggest that the rapid incision of the Tibetan Plateau and the establishment of the Mekong River in the middle Miocene may be attributed to increased erosion during a period of high monsoon precipitation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Topographic map of the study area and major active faults and rivers.
Fig. 2: A comparison of Asian summer monsoon, atmospheric CO2, Mekong River AHe age distribution and benthic oxygen isotope records between 20 and 5 Ma.
Fig. 3: Vertical profiles of Mekong River AHe ages and thermal history modelling reveal increased incision rates during the middle Miocene.
Fig. 4: Modelled stream profile and predicted river profile variations based on an upwind finite-difference model.

Data availability

The authors declare that all data supporting the findings of this study are available within the article and its Supplementary Information.


  1. 1.

    Li, J. et al. Magnetostratigraphic dating of river terraces: rapid and intermittent incision by the Yellow River of the northeastern margin of the Tibetan Plateau during the Quaternary. J. Geophys. Res. 102, 10121–10132 (1997).

    Article  Google Scholar 

  2. 2.

    Clark, M. K. et al. Late Cenozoic uplift of southeastern Tibet. Geology 33, 525–528 (2005).

    Article  Google Scholar 

  3. 3.

    Pan, B. et al. A 900 ky record of strath terrace formation during glacial-interglacial transitions in northwest China. Geology 31, 957–960 (2003).

    Article  Google Scholar 

  4. 4.

    Clift, P. D. Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth Planet. Sci. Lett. 241, 571–580 (2006).

    Article  Google Scholar 

  5. 5.

    Wang, X. et al. Climate-dependent fluvial architecture and processes on a suborbital timescale in areas of rapid tectonic uplift: an example from the NE Tibetan Plateau. Global Planet. Change 133, 318–329 (2015).

    Article  Google Scholar 

  6. 6.

    Nie, J. et al. Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment. Nat. Commun. 6, 8511 (2015).

    Article  Google Scholar 

  7. 7.

    Zeitler, P. K. et al. Erosion, Himalayan geodynamics, and the geomorphology of metamorphism. GSA Today 11, 4–9 (2001).

    Article  Google Scholar 

  8. 8.

    Craddock, W. H. et al. Rapid fluvial incision along the Yellow River during headward basin integration. Nat. Geosci. 3, 209–213 (2010).

    Article  Google Scholar 

  9. 9.

    Lease, R. O. & Ehlers, T. A. Incision into the eastern Andean plateau during Pliocene cooling. Science 341, 774–776 (2013).

    Article  Google Scholar 

  10. 10.

    Whipple, K. X., DiBase, R. A., Ouimet, D. B. & Forte, A. M. Preservation or piracy: diagnosing low-relief, high-elevation surface formation mechanisms. Geology 45, 91–94 (2017).

    Article  Google Scholar 

  11. 11.

    Yang, R., Willett, S. D. & Goren, L. In situ low-relief landscape formation as a result of river network disruption. Nature 520, 526–529 (2015).

    Article  Google Scholar 

  12. 12.

    Clark, M. K. & Royden, L. H. Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology 28, 703–706 (2000).

    Article  Google Scholar 

  13. 13.

    Tremblay, M. M. et al. Erosion in southern Tibet shut down at ~10 Ma due to enhanced rock uplift within the Himalaya. Proc. Natl Acad. Sci. USA 112, 12030–12035 (2015).

    Article  Google Scholar 

  14. 14.

    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Article  Google Scholar 

  15. 15.

    Tripati, A. K., Roberts, C. D. & Eagle, R. A. Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years. Science 326, 1394–1397 (2009).

    Article  Google Scholar 

  16. 16.

    Guo, Z. T. et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416, 159–163 (2002).

    Article  Google Scholar 

  17. 17.

    Guo, Z. T. et al. A major reorganization of Asian climate by the early Miocene. Clim. Past 4, 153–174 (2008).

    Article  Google Scholar 

  18. 18.

    Hoke, G. D., Liu-Zeng, J., Hren, M. T., Wissink, G. K. & Garzione, C. N. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth Planet. Sci. Lett. 394, 270–278 (2014).

    Article  Google Scholar 

  19. 19.

    Li, S., Currie, B. S., Rowley, D. B. & Ingalls, M. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: constraints on the tectonic evolution of the region. Earth Planet. Sci. Lett. 432, 415–424 (2015).

    Article  Google Scholar 

  20. 20.

    Rohrmann, A. et al. Thermochronologic evidence for plateau formation in central Tibet by 45 Ma. Geology 40, 187–190 (2012).

    Article  Google Scholar 

  21. 21.

    Horton, B. K., Yin, A., Spurlin, M. S., Zhou, J. & Wang, J. Paleocene–Eocene syncontractional sedimentation in narrow, lacustrine-dominated basins of east–central Tibet. Geol. Soc. Am. Bull. 114, 771–786 (2002).

    Article  Google Scholar 

  22. 22.

    Kapp, P., Yin, A., Harrison, T. M. & Ding, L. Cretaceous–Tertiary shortening, basin development, and volcanism in central Tibet. Geol. Soc. Am. Bull. 117, 865–878 (2005).

    Article  Google Scholar 

  23. 23.

    Murphy, M. A. et al. Did the Indo-Asian collision alone create the Tibetan plateau? Geology 25, 719–722 (1997).

    Article  Google Scholar 

  24. 24.

    Wang, C. et al. Constraints on the early uplift history of the Tibetan Plateau. Proc. Natl Acad. Sci. USA 105, 4987–4992 (2008).

    Article  Google Scholar 

  25. 25.

    Wang, E. & Burchfiel, B. Interpretation of Cenozoic tectonics in the right–lateral accommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis. Int. Geol. Rev. 39, 191–219 (1997).

    Article  Google Scholar 

  26. 26.

    Leloup, P. H. et al. The Ailao Shan–Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics 251, 3–84 (1995).

    Article  Google Scholar 

  27. 27.

    Gilley, L. D. et al. Direct dating of left–lateral deformation along the Red River shear zone, China and Vietnam. J. Geophys. Res. 108, 2127 (2003).

    Article  Google Scholar 

  28. 28.

    Métivier, F., Gaudemer, Y., Tapponnier, P. & Klein, M. Mass accumulation rates in Asia during the Cenozoic. Geophys. J. Int. 137, 280–318 (1999).

    Article  Google Scholar 

  29. 29.

    Hallet, B. & Molnar, P. Distorted drainage basins as markers of crustal strain east of the Himalaya. J. Geophys. Res. 106, 13697–13709 (2001).

    Article  Google Scholar 

  30. 30.

    Clark, M. et al. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics 23, TC1006 (2004).

    Article  Google Scholar 

  31. 31.

    Shi, X., Qiu, X. L., Liu, H. L., Chu, Z. Y. & Xia, B. Cenozoic cooling history of Lincang granitoid batholith, western Yunnan: evidence from Fission track data. Chinese J. Geophys. 49, 135–142 (2006).

    Google Scholar 

  32. 32.

    Fitzgerald, P. G., Stump, E. & Redfield, T. F. Late Cenozoic uplift of Denali and its relation to relative plate motion and fault morphology. Science 259, 497–499 (1993).

    Article  Google Scholar 

  33. 33.

    Dai, J., Wang, C., Hourigan, J. & Santosh, M. Insights into the early Tibetan Plateau from (U–Th)/He thermochronology. J. Geol. Soc. Lond. 170, 917–927 (2013).

    Article  Google Scholar 

  34. 34.

    Liu-Zeng, J. et al. Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low-temperature thermochronology. Earth Planet. Sci. Lett. 490, 62–76 (2018).

    Article  Google Scholar 

  35. 35.

    Yang, R. et al. Spatial and temporal pattern of erosion in the Three Rivers Region, southeastern Tibet. Earth Planet. Sci. Lett. 433, 10–20 (2016).

    Article  Google Scholar 

  36. 36.

    Roering, J. J., Kirchner, J. W. & Dietrich, W. E. Hillslope evolution by nonlinear, slope-dependent transport: steady state morphology and equilibrium adjustment timescales. J. Geophys. Res. 106, 16499–16513 (2001).

    Article  Google Scholar 

  37. 37.

    Ouimet, W. B., Whipple, K. X. & Granger, D. E. Beyond threshold hillslopes: channel adjustment to base-level fall in tectonically active mountain ranges. Geology 37, 579–582 (2009).

    Article  Google Scholar 

  38. 38.

    Gourbet, L. et al. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan plateau evolution. Tectonophysics 700-701, 162–179 (2017).

    Article  Google Scholar 

  39. 39.

    Nie, J. et al. Dominant 100,000-year precipitation cyclicity in a late Miocene lake from Northeast Tibet. Sci. Adv. 3, e1600762 (2017).

    Google Scholar 

  40. 40.

    Xu, X. et al. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan–Yunnan region, China. Sci. China D 46, 210–226 (2003).

    Article  Google Scholar 

  41. 41.

    Rowley, D. B. & Currie, B. S. Palaeo-altimetry of the late Eocene to Miocene Lunpola Basin, central Tibet. Nature 439, 677–681 (2006).

    Article  Google Scholar 

  42. 42.

    DeCelles, P. G. et al. High and dry in central Tibet during the Late Oligocene. Earth Planet. Sci. Lett. 253, 389–401 (2007).

    Article  Google Scholar 

  43. 43.

    Polissar, P. J., Freeman, K. H., Rowley, D. B., McInerney, F. A. & Currie, B. S. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers. Earth Planet. Sci. Lett. 287, 64–76 (2009).

    Article  Google Scholar 

  44. 44.

    Xu, Q. et al. Paleogene high elevations in the Qiangtang Terrane, central Tibetan Plateau. Earth Planet. Sci. Lett. 362, 31–42 (2013).

    Article  Google Scholar 

  45. 45.

    Wei, Y. et al. Low palaeoelevation of the northern Lhasa terrane during late Eocene: fossil foraminifera and stable isotope evidence from the Gerze Basin. Sci. Rep. 6, 27508 (2016).

    Article  Google Scholar 

  46. 46.

    Staisch, L. M., Niemi, N. A., Clark, M. K. & Chang, H. Eocene to late Oligocene history of crustal shortening within the Hoh Xil Basin and implications for the uplift history of the northern Tibetan Plateau. Tectonics 35, 862–895 (2016).

    Article  Google Scholar 

  47. 47.

    Yin, A. & Harrison, T. M. Geologic evolution of the Himalayan–Tibetan orogen. Annu. Rev. Earth Planet. Sci. 28, 211–280 (2000).

    Article  Google Scholar 

  48. 48.

    Beek, P. V. D., Summerfield, M. A., Braun, J., Brown, R. W. & Fleming, A. Modeling postbreakup landscape development and denudational history across the southeast African (Drakensberg Escarpment) margin. J. Geophys. Res. 107, 2351 (2002).

    Google Scholar 

  49. 49.

    Beek, P. V. D. & Braun, J. Controls on post-mid-Cretaceous landscape evolution in the southeastern highlands of Australia: insights from numerical surface process models. J. Geophys. Res. 104, 4945–4966 (1999).

    Article  Google Scholar 

  50. 50.

    Hoke, G. D. et al. Geomorphic evidence for post-10 Ma uplift of the western flank of the central Andes 18°30′–22°S. Tectonics 26, TC5021 (2007).

    Article  Google Scholar 

  51. 51.

    Stockli, D. F., Farley, K. A. & Dumitru, T. A. Calibration of the apatite (U–Th)/He thermochronometer on an exhumed fault block, White Mountains, California. Geology 28, 983–986 (2000).

    Article  Google Scholar 

  52. 52.

    Restrepo-Moreno, S. A., Foster, D. A., Stockli, D. F. & Parra-Sánchez, L. N. Long-term erosion and exhumation of the ‘Altiplano Antioqueño’, Northern Andes (Colombia) from apatite (U-Th)/He thermochronology. Earth Planet. Sci. Lett. 278, 1–12 (2009).

    Article  Google Scholar 

  53. 53.

    Evans, N. J., Byrne, J. P., Keegan, J. T. & Dotter, L. E. Determination of uranium and thorium in zircon, apatite, and fluorite: application to laser (U–Th)/He thermochronology. J. Anal. Chem. 60, 1159–1165 (2005).

    Article  Google Scholar 

  54. 54.

    Tucker, G. E. Drainage basin sensitivity to tectonic and climatic forcing: implications of a stochastic model for the role of entrainment and erosion thresholds. Earth Surf. Proc. Land. 29, 185–205 (2004).

    Article  Google Scholar 

  55. 55.

    Hobley, D. E. J. et al. Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics. Earth Surf. Dynam. 5, 21–46 (2017).

    Article  Google Scholar 

  56. 56.

    Whipple, K. X. & Tucker, G. E. Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. 104, 17661–17674 (1999).

    Article  Google Scholar 

  57. 57.

    Snyder, N. P., Whipple, K. X., Tucker, G. E. & Merritts, D. J. Importance of a stochastic distribution of floods and erosion thresholds in the bedrock river incision problem. J. Geophys. Res. 108, 2117 (2003).

    Google Scholar 

  58. 58.

    Becker, J. J. et al. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar. Geod. 32, 355–371 (2009).

    Article  Google Scholar 

  59. 59.

    Scherler, D., Bookhagen, B. & Strecker, M. R. Tectonic control on 10Be-derived erosion rates in the Garhwal Himalaya, India. J. Geophys. Res. 119, 1–23 (2014).

    Google Scholar 

  60. 60.

    Wilkinson, B. H. Precipitation as meteoric sediment and scaling laws of bedrock incision: assessing the Sadler effect. J. Geol. 123, 95–112 (2015).

    Article  Google Scholar 

  61. 61.

    Braun, J., Robert, X. & Simon-Labric, T. Eroding dynamic topography. Geophys. Res. Lett. 40, 1494–1499 (2013).

    Article  Google Scholar 

  62. 62.

    Lague, D. The stream power river incision model: evidence, theory and beyond. Earth Surf. Proc. Land. 39, 38–61 (2014).

    Article  Google Scholar 

  63. 63.

    Gallagher, K. Transdimensional inverse thermal history modeling for quantitative thermochronology. J. Geophys. Res. 117, B02408 (2012).

    Google Scholar 

  64. 64.

    Shi, X., Qiu, X. L., Liu, H. L., Chu, Z. Y. & Xia, B. Thermochronological analyses on the cooling history of the Lincang granitoid batholith, Western Yunnan. Acta Petrol. Sin. 22, 465–479 (2006).

    Google Scholar 

  65. 65.

    Flowers, R. M., Ketcham, R. A., Shuster, D. L. & Farley, K. A. Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim. Cosmochim. Acta 73, 2347–2365 (2009).

    Article  Google Scholar 

  66. 66.

    Gautheron, C., Tassan-Got, L., Barbarand, J. & Pagel, M. Effect of alpha-damage annealing on apatite (U–Th)/He thermochronology. Chem. Geol. 266, 157–170 (2009).

    Article  Google Scholar 

Download references


We thank J. Dai for clarification of the sample elevations of the upper Mekong in his work, S. Ji for assisting with sampling, Z. Zhang for analytical help, and H. Geng for discussion. This work was financially supported by the National Key Research and Development Program of China (2016YFE0109500), the (973) National Basic Research Program of China (grant no. 2013CB956400), the National Natural Science Foundation of China (grant nos 41422204 and 41672157) and the US National Science Foundation (grant nos 1348005 and 1545859). M.D. was supported by Australian Research Council Discovery funding scheme (DP160102427) and Curtin Research Fellowship.

Author information




J.N., G.H., K.G. and C.N.G. designed the experiments. J.N., G.R., D.S., K.G., M.D., Y.W., Z.W. and S.L. performed the experiments. All authors analysed the data. J.N., G.R., K.G., G.H. and W.W. wrote the manuscript with help from the other authors.

Corresponding author

Correspondence to Junsheng Nie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Figures 1–10, Supplementary Tables 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nie, J., Ruetenik, G., Gallagher, K. et al. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation. Nature Geosci 11, 944–948 (2018). https://doi.org/10.1038/s41561-018-0244-z

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing