Article | Published:

Low buffering capacity and slow recovery of anthropogenic phosphorus pollution in watersheds

Nature Geosciencevolume 11pages921925 (2018) | Download Citation

Abstract

Excess anthropogenic phosphorus in watersheds, transported with runoff, can result in aquatic eutrophication, a serious global water quality concern. Watersheds can retain phosphorus, especially in their soils, which can serve as a buffer against the effect of excessive use of phosphorus. However, whether there is a quantifiable threshold at which a watershed exceeds its optimal phosphorus buffering capacity (beyond which riverine loads would dramatically increase) remains unknown. Here we quantified a watershed phosphorus buffering capacity threshold based on accumulation data over 110 years in 23 watersheds of a large North American river basin with globally representative agricultural soils. We found a surprisingly low threshold of just 2.1 t P km−2 (0.03–8.7 t P km−2). Beyond this, further P inputs to watersheds cause a significant acceleration of P loss in runoff. Using a simple exponential decay model, the time estimated to eliminate legacy P via runoff in our watersheds ranges from ~ 100 to over 2,000 years. The rapidity with which the watershed buffering threshold can be surpassed during accumulation, particularly given current anthropogenic phosphorus input rates, versus the long return to baseline suggests that new strategies to reconcile watershed activities and water quality are urgently needed.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the findings of this study are available at https://figshare.com/s/a4ddad1b180a6a1e40cf.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Elser, J. & Bennett, E. Phosphorus cycle: a broken biogeochemical cycle. Nature 478, 29–31 (2011).

  2. 2.

    Bennett, E. M., Carpenter, S. R. & Caraco, N. F. Human impact on erodable phosphorus and eutrophication: a global perspective. BioScience 51, 227–234 (2001).

  3. 3.

    Carpenter, S. R. et al. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8, 559–568 (1998).

  4. 4.

    Dodds, W. K. et al. Eutrophication of US freshwaters: analysis of potential economic damages. Environ. Sci. Technol. 43, 12–19 (2008).

  5. 5.

    Smith, V. H., Tilman, G. D. & Nekola, J. C. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 100, 179–196 (1999).

  6. 6.

    Fink, G., Flörke, M., Reder, K. & Alcamo, J. Phosphorus loadings to the world’s largest lakes: sources and trends. Global Biogeochem. Cycles 32, 617–634 (2018).

  7. 7.

    Sharpley, A. et al. Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment. J. Environ. Qual. 42, 1308–1326 (2013).

  8. 8.

    Meals, D. W., Dressing, S. A. & Davenport, T. E. Lag time in water quality response to best management practices: a review. J. Environ. Qual. 39, 85–96 (2010).

  9. 9.

    Green, M. B. & Finlay, J. C. Patterns of hydrologic control over stream water total nitrogen to total phosphorus ratios. Biogeochemistry 99, 15–30 (2010).

  10. 10.

    Ockenden, M. et al. Changing climate and nutrient transfers: evidence from high temporal resolution concentration-flow dynamics in headwater catchments. Sci. Total Environ. 548, 325–339 (2016).

  11. 11.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

  12. 12.

    Powers, S. M. et al. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nat. Geosci. 9, 353–356 (2016).

  13. 13.

    Froelich, P. N. Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. Limnol. Oceanogr. 33, 649–668 (1988).

  14. 14.

    Nair, V. D. Soil phosphorus saturation ratio for risk assessment in land use systems. Front. Environ. Sci. 2, 6 (2014).

  15. 15.

    Maguire, R. & Sims, J. Measuring agronomic and environmental soil phosphorus saturation and predicting phosphorus leaching with Mehlich 3. Soil Sci. Soc. Am. J. 66, 2033–2039 (2002).

  16. 16.

    Haygarth, P. M. et al. Sustainable phosphorus management and the need for a long-term perspective: the legacy hypothesis. Environ. Sci. Technol. 48, 8417–8419 (2014).

  17. 17.

    Carpenter, S. R. Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc. Natl Acad. Sci. USA 102, 10002–10005 (2005).

  18. 18.

    Jarvie, H. P. et al. Water quality remediation faces unprecedented challenges from ‘legacy phosphorus’. Environ. Sci. Technol. 47, 8997–8998 (2013).

  19. 19.

    Chen, D. et al. Legacy nutrient dynamics at the watershed scale: principles, modeling, and implications. Adv. Agron. 149, 237–313 (2018).

  20. 20.

    Vadas, P., Kleinman, P., Sharpley, A. & Turner, B. Relating soil phosphorus to dissolved phosphorus in runoff. J. Environ. Qual. 34, 572–580 (2005).

  21. 21.

    McDowell, R., Cox, N., Daughney, C., Wheeler, D. & Moreau, M. A national assessment of the potential linkage between soil, and surface and groundwater concentrations of phosphorus. J. Am. Water Res. Assoc. 51, 992–1002 (2015).

  22. 22.

    Jarvie, H. P. et al. Within-river phosphorus retention: accounting for a missing piece in the watershed phosphorus puzzle. Environ. Sci. Technol. 46, 13284–13292 (2012).

  23. 23.

    Goyette, J. O., Bennett, E. M., Howarth, R. W. & Maranger, R. Changes in anthropogenic nitrogen and phosphorus inputs to the St. Lawrence sub-basin over 110 years and impacts on riverine export. Global Biogeochem. Cycles 30, 1000–1014 (2016).

  24. 24.

    Weil, R. R. & Brady, N. C. The Nature and Properties of Soils 15th edn (Pearson, London, 2016).

  25. 25.

    Hong, B. et al. Evaluating regional variation of net anthropogenic nitrogen and phosphorus inputs (NANI/NAPI), major drivers, nutrient retention pattern and management implications in the multinational areas of Baltic Sea basin. Ecol. Model. 227, 117–135 (2012).

  26. 26.

    Han, H., Bosch, N. & Allan, J. D. Spatial and temporal variation in phosphorus budgets for 24 watersheds in the Lake Erie and Lake Michigan basins. Biogeochemistry 102, 45–58 (2011).

  27. 27.

    Steffen, W. et al. Global Change and the Earth System: A Planet Under Pressure (Springer, Heidelberg, 2004).

  28. 28.

    Jenny, J.-P. et al. Urban point sources of nutrients were the leading cause for the historical spread of hypoxia across European lakes. Proc. Natl Acad. Sci. USA 113, 12655–12660 (2016).

  29. 29.

    Douglas, M. S., Smol, J. P., Savelle, J. M. & Blais, J. M. Prehistoric Inuit whalers affected Arctic freshwater ecosystems. Proc. Natl Acad. Sci. USA 101, 1613–1617 (2004).

  30. 30.

    Hutchinson, G. E. et al. Ianula: An account of the history and development of the Lago di Monterosi, Latium, Italy. Trans. Am. Phil. Soc. 60, 1–178 (1970).

  31. 31.

    Bennett, E. M., Reed-Andersen, T., Houser, J. N., Gabriel, J. R. & Carpenter, S. R. A phosphorus budget for the Lake Mendota watershed. Ecosystems 2, 69–75 (1999).

  32. 32.

    Marshall, I. B., Schut, P. H. & Ballard, M. A National Ecological Framework for Canada: Attribute Data (Agriculture and Agri-Food Canada, Research Branch, Centre for Land and Biological Resources Research, and Environment Canada, State of the Environment Directorate, Ecozone Analysis Branch, Ottawa/Hull, 1999).

  33. 33.

    Soil Landscapes of Canada Working Group. Soil Landscapes of Canada version 3.2 (Agriculture and Agri-Food Canada, 2010).

  34. 34.

    Ulén, B. & Snäll, S. Forms and retention of phosphorus in an illite-clay soil profile with a history of fertilisation with pig manure and mineral fertilisers. Geoderma 137, 455–465 (2007).

  35. 35.

    Jarvie, H. P. et al. Phosphorus mitigation to control river eutrophication: murky waters, inconvenient truths, and ‘postnormal’ science. J. Environ. Qual. 42, 295–304 (2013).

  36. 36.

    Smeck, N. E. Phosphorus dynamics in soils and landscapes. Geoderma 36, 185–199 (1985).

  37. 37.

    Carpenter, S. R., Booth, E. G. & Kucharik, C. J. Extreme precipitation and phosphorus loads from two agricultural watersheds. Limnol. Oceanogr. 63, 1221–1233 (2018).

  38. 38.

    Good, A. G. & Beatty, P. H. Fertilizing nature: a tragedy of excess in the commons. PLoS Biol. 9, e1001124 (2011).

  39. 39.

    Rowe, H. et al. Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security. Nutr. Cycl. Agroecosyst. 104, 393–412 (2016).

  40. 40.

    Withers, P. J. et al. Stewardship to tackle global phosphorus inefficiency: the case of Europe. Ambio 44, 193–206 (2015).

  41. 41.

    Sattari, S. Z., Bouwman, A. F., Giller, K. E. & van Ittersum, M. K. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc. Natl Acad. Sci. USA 109, 6348–6353 (2012).

  42. 42.

    Bast, L., Mullen, R., O’Halloran, I., Warncke, D. & Bruulsema, T. Phosphorus balance trends on agricultural soils of the Lake Erie drainage basin. Better Crops 93, 6–8 (2009).

  43. 43.

    Cordell, D., Drangert, J.-O. & White, S. The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009).

  44. 44.

    Motew, M. et al. The influence of legacy P on lake water quality in a Midwestern agricultural watershed. Ecosystems 20, 1468–1482 (2017).

  45. 45.

    Russell, M. J., Weller, D. E., Jordan, T. E., Sigwart, K. J. & Sullivan, K. J. Net anthropogenic phosphorus inputs: spatial and temporal variability in the Chesapeake Bay region. Biogeochemistry 88, 285–304 (2008).

  46. 46.

    Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. & Baker, C. I. Circular analysis in systems neuroscience: the dangers of double dipping. Nat. Neurosci. 12, 535–540 (2009).

  47. 47.

    Banque de Données Sur la Qualité du Milieu Aquatique (BQMA) (Ministère du Développement Durable, de l'Environnement et de la Lutte Contre les Changements Climatiques, accessed June 2018); http://www.mddelcc.gouv.qc.ca/eau/Atlas_interactif/donnees_recentes/donnees_p_tot.asp#onglets

  48. 48.

    Water Level and Flow History (Centre d'Expertise Hydrique du Québec, accessed June 2018); https://www.cehq.gouv.qc.ca/hydrometrie/

  49. 49.

    Runkel, R. L., Crawford, C. G. & Cohn, T. A. Load Estimator (LOADEST): A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers (USGS, 2004).

  50. 50.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).

  51. 51.

    Appling, A. P., Leon, M. C. & McDowell, W. H. Reducing bias and quantifying uncertainty in watershed flux estimates: the R package loadflex. Ecosphere 6, 269 (2015).

  52. 52.

    Muggeo, V. M. segmented: an R package to fit regression models with broken-line relationships. R News 8, 20–25 (2008).

Download references

Acknowledgements

The authors thank T. Poisot, J. F. Lapierre, D. Morse and members of the Maranger laboratory for helpful suggestions. N. Fortin St Gelais helped with randomized tests. This research was supported by Fonds de Recherche Nature et Technologie du Québec (FQRNT) and Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL) student scholarship grants to J.O.G. and a National Science and Engineering Research Council of Canada (NSERC) Discovery grant to R.M.

Author information

Affiliations

  1. Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Université de Montréal, Département de Sciences Biologiques, Montréal, Québec, Canada

    • J. -O. Goyette
    •  & R. Maranger
  2. Department of Natural Resource Sciences and McGill School of Environment, McGill University, Montreal, Québec, Canada

    • E. M. Bennett

Authors

  1. Search for J. -O. Goyette in:

  2. Search for E. M. Bennett in:

  3. Search for R. Maranger in:

Contributions

All authors participated in developing the idea and the conceptual framework of the study. J.O.G. and R.M. designed the analysis and J.O.G. analysed the data and performed simulations. All authors wrote the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to J. -O. Goyette or R. Maranger.

Supplementary information

  1. Supplementary Information

    Supplementary Descriptions, Supplementary Figures 1–5, Supplementary Tables 1–4.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41561-018-0238-x