Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Low buffering capacity and slow recovery of anthropogenic phosphorus pollution in watersheds


Excess anthropogenic phosphorus in watersheds, transported with runoff, can result in aquatic eutrophication, a serious global water quality concern. Watersheds can retain phosphorus, especially in their soils, which can serve as a buffer against the effect of excessive use of phosphorus. However, whether there is a quantifiable threshold at which a watershed exceeds its optimal phosphorus buffering capacity (beyond which riverine loads would dramatically increase) remains unknown. Here we quantified a watershed phosphorus buffering capacity threshold based on accumulation data over 110 years in 23 watersheds of a large North American river basin with globally representative agricultural soils. We found a surprisingly low threshold of just 2.1 t P km−2 (0.03–8.7 t P km−2). Beyond this, further P inputs to watersheds cause a significant acceleration of P loss in runoff. Using a simple exponential decay model, the time estimated to eliminate legacy P via runoff in our watersheds ranges from ~ 100 to over 2,000 years. The rapidity with which the watershed buffering threshold can be surpassed during accumulation, particularly given current anthropogenic phosphorus input rates, versus the long return to baseline suggests that new strategies to reconcile watershed activities and water quality are urgently needed.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Threshold of watershed P buffering capacity.
Fig. 2: Time to cross the watershed P buffering capacity threshold.
Fig. 3: Time required to return to baseline conditions.

Data availability

The data that support the findings of this study are available at


  1. Elser, J. & Bennett, E. Phosphorus cycle: a broken biogeochemical cycle. Nature 478, 29–31 (2011).

    Article  Google Scholar 

  2. Bennett, E. M., Carpenter, S. R. & Caraco, N. F. Human impact on erodable phosphorus and eutrophication: a global perspective. BioScience 51, 227–234 (2001).

    Article  Google Scholar 

  3. Carpenter, S. R. et al. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8, 559–568 (1998).

    Article  Google Scholar 

  4. Dodds, W. K. et al. Eutrophication of US freshwaters: analysis of potential economic damages. Environ. Sci. Technol. 43, 12–19 (2008).

    Article  Google Scholar 

  5. Smith, V. H., Tilman, G. D. & Nekola, J. C. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 100, 179–196 (1999).

    Article  Google Scholar 

  6. Fink, G., Flörke, M., Reder, K. & Alcamo, J. Phosphorus loadings to the world’s largest lakes: sources and trends. Global Biogeochem. Cycles 32, 617–634 (2018).

    Article  Google Scholar 

  7. Sharpley, A. et al. Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment. J. Environ. Qual. 42, 1308–1326 (2013).

    Article  Google Scholar 

  8. Meals, D. W., Dressing, S. A. & Davenport, T. E. Lag time in water quality response to best management practices: a review. J. Environ. Qual. 39, 85–96 (2010).

    Article  Google Scholar 

  9. Green, M. B. & Finlay, J. C. Patterns of hydrologic control over stream water total nitrogen to total phosphorus ratios. Biogeochemistry 99, 15–30 (2010).

    Article  Google Scholar 

  10. Ockenden, M. et al. Changing climate and nutrient transfers: evidence from high temporal resolution concentration-flow dynamics in headwater catchments. Sci. Total Environ. 548, 325–339 (2016).

    Article  Google Scholar 

  11. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    Article  Google Scholar 

  12. Powers, S. M. et al. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nat. Geosci. 9, 353–356 (2016).

    Article  Google Scholar 

  13. Froelich, P. N. Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. Limnol. Oceanogr. 33, 649–668 (1988).

    Google Scholar 

  14. Nair, V. D. Soil phosphorus saturation ratio for risk assessment in land use systems. Front. Environ. Sci. 2, 6 (2014).

    Google Scholar 

  15. Maguire, R. & Sims, J. Measuring agronomic and environmental soil phosphorus saturation and predicting phosphorus leaching with Mehlich 3. Soil Sci. Soc. Am. J. 66, 2033–2039 (2002).

    Article  Google Scholar 

  16. Haygarth, P. M. et al. Sustainable phosphorus management and the need for a long-term perspective: the legacy hypothesis. Environ. Sci. Technol. 48, 8417–8419 (2014).

    Article  Google Scholar 

  17. Carpenter, S. R. Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc. Natl Acad. Sci. USA 102, 10002–10005 (2005).

    Article  Google Scholar 

  18. Jarvie, H. P. et al. Water quality remediation faces unprecedented challenges from ‘legacy phosphorus’. Environ. Sci. Technol. 47, 8997–8998 (2013).

    Article  Google Scholar 

  19. Chen, D. et al. Legacy nutrient dynamics at the watershed scale: principles, modeling, and implications. Adv. Agron. 149, 237–313 (2018).

    Article  Google Scholar 

  20. Vadas, P., Kleinman, P., Sharpley, A. & Turner, B. Relating soil phosphorus to dissolved phosphorus in runoff. J. Environ. Qual. 34, 572–580 (2005).

    Article  Google Scholar 

  21. McDowell, R., Cox, N., Daughney, C., Wheeler, D. & Moreau, M. A national assessment of the potential linkage between soil, and surface and groundwater concentrations of phosphorus. J. Am. Water Res. Assoc. 51, 992–1002 (2015).

    Article  Google Scholar 

  22. Jarvie, H. P. et al. Within-river phosphorus retention: accounting for a missing piece in the watershed phosphorus puzzle. Environ. Sci. Technol. 46, 13284–13292 (2012).

    Article  Google Scholar 

  23. Goyette, J. O., Bennett, E. M., Howarth, R. W. & Maranger, R. Changes in anthropogenic nitrogen and phosphorus inputs to the St. Lawrence sub-basin over 110 years and impacts on riverine export. Global Biogeochem. Cycles 30, 1000–1014 (2016).

    Article  Google Scholar 

  24. Weil, R. R. & Brady, N. C. The Nature and Properties of Soils 15th edn (Pearson, London, 2016).

  25. Hong, B. et al. Evaluating regional variation of net anthropogenic nitrogen and phosphorus inputs (NANI/NAPI), major drivers, nutrient retention pattern and management implications in the multinational areas of Baltic Sea basin. Ecol. Model. 227, 117–135 (2012).

    Article  Google Scholar 

  26. Han, H., Bosch, N. & Allan, J. D. Spatial and temporal variation in phosphorus budgets for 24 watersheds in the Lake Erie and Lake Michigan basins. Biogeochemistry 102, 45–58 (2011).

    Article  Google Scholar 

  27. Steffen, W. et al. Global Change and the Earth System: A Planet Under Pressure (Springer, Heidelberg, 2004).

  28. Jenny, J.-P. et al. Urban point sources of nutrients were the leading cause for the historical spread of hypoxia across European lakes. Proc. Natl Acad. Sci. USA 113, 12655–12660 (2016).

    Article  Google Scholar 

  29. Douglas, M. S., Smol, J. P., Savelle, J. M. & Blais, J. M. Prehistoric Inuit whalers affected Arctic freshwater ecosystems. Proc. Natl Acad. Sci. USA 101, 1613–1617 (2004).

    Article  Google Scholar 

  30. Hutchinson, G. E. et al. Ianula: An account of the history and development of the Lago di Monterosi, Latium, Italy. Trans. Am. Phil. Soc. 60, 1–178 (1970).

    Article  Google Scholar 

  31. Bennett, E. M., Reed-Andersen, T., Houser, J. N., Gabriel, J. R. & Carpenter, S. R. A phosphorus budget for the Lake Mendota watershed. Ecosystems 2, 69–75 (1999).

    Article  Google Scholar 

  32. Marshall, I. B., Schut, P. H. & Ballard, M. A National Ecological Framework for Canada: Attribute Data (Agriculture and Agri-Food Canada, Research Branch, Centre for Land and Biological Resources Research, and Environment Canada, State of the Environment Directorate, Ecozone Analysis Branch, Ottawa/Hull, 1999).

  33. Soil Landscapes of Canada Working Group. Soil Landscapes of Canada version 3.2 (Agriculture and Agri-Food Canada, 2010).

  34. Ulén, B. & Snäll, S. Forms and retention of phosphorus in an illite-clay soil profile with a history of fertilisation with pig manure and mineral fertilisers. Geoderma 137, 455–465 (2007).

    Article  Google Scholar 

  35. Jarvie, H. P. et al. Phosphorus mitigation to control river eutrophication: murky waters, inconvenient truths, and ‘postnormal’ science. J. Environ. Qual. 42, 295–304 (2013).

    Article  Google Scholar 

  36. Smeck, N. E. Phosphorus dynamics in soils and landscapes. Geoderma 36, 185–199 (1985).

    Article  Google Scholar 

  37. Carpenter, S. R., Booth, E. G. & Kucharik, C. J. Extreme precipitation and phosphorus loads from two agricultural watersheds. Limnol. Oceanogr. 63, 1221–1233 (2018).

    Article  Google Scholar 

  38. Good, A. G. & Beatty, P. H. Fertilizing nature: a tragedy of excess in the commons. PLoS Biol. 9, e1001124 (2011).

    Article  Google Scholar 

  39. Rowe, H. et al. Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security. Nutr. Cycl. Agroecosyst. 104, 393–412 (2016).

    Article  Google Scholar 

  40. Withers, P. J. et al. Stewardship to tackle global phosphorus inefficiency: the case of Europe. Ambio 44, 193–206 (2015).

    Article  Google Scholar 

  41. Sattari, S. Z., Bouwman, A. F., Giller, K. E. & van Ittersum, M. K. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc. Natl Acad. Sci. USA 109, 6348–6353 (2012).

    Article  Google Scholar 

  42. Bast, L., Mullen, R., O’Halloran, I., Warncke, D. & Bruulsema, T. Phosphorus balance trends on agricultural soils of the Lake Erie drainage basin. Better Crops 93, 6–8 (2009).

    Google Scholar 

  43. Cordell, D., Drangert, J.-O. & White, S. The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009).

    Article  Google Scholar 

  44. Motew, M. et al. The influence of legacy P on lake water quality in a Midwestern agricultural watershed. Ecosystems 20, 1468–1482 (2017).

    Article  Google Scholar 

  45. Russell, M. J., Weller, D. E., Jordan, T. E., Sigwart, K. J. & Sullivan, K. J. Net anthropogenic phosphorus inputs: spatial and temporal variability in the Chesapeake Bay region. Biogeochemistry 88, 285–304 (2008).

    Article  Google Scholar 

  46. Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. & Baker, C. I. Circular analysis in systems neuroscience: the dangers of double dipping. Nat. Neurosci. 12, 535–540 (2009).

    Article  Google Scholar 

  47. Banque de Données Sur la Qualité du Milieu Aquatique (BQMA) (Ministère du Développement Durable, de l'Environnement et de la Lutte Contre les Changements Climatiques, accessed June 2018);

  48. Water Level and Flow History (Centre d'Expertise Hydrique du Québec, accessed June 2018);

  49. Runkel, R. L., Crawford, C. G. & Cohn, T. A. Load Estimator (LOADEST): A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers (USGS, 2004).

  50. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).

  51. Appling, A. P., Leon, M. C. & McDowell, W. H. Reducing bias and quantifying uncertainty in watershed flux estimates: the R package loadflex. Ecosphere 6, 269 (2015).

    Article  Google Scholar 

  52. Muggeo, V. M. segmented: an R package to fit regression models with broken-line relationships. R News 8, 20–25 (2008).

    Google Scholar 

Download references


The authors thank T. Poisot, J. F. Lapierre, D. Morse and members of the Maranger laboratory for helpful suggestions. N. Fortin St Gelais helped with randomized tests. This research was supported by Fonds de Recherche Nature et Technologie du Québec (FQRNT) and Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL) student scholarship grants to J.O.G. and a National Science and Engineering Research Council of Canada (NSERC) Discovery grant to R.M.

Author information

Authors and Affiliations



All authors participated in developing the idea and the conceptual framework of the study. J.O.G. and R.M. designed the analysis and J.O.G. analysed the data and performed simulations. All authors wrote the manuscript.

Corresponding authors

Correspondence to J. -O. Goyette or R. Maranger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Descriptions, Supplementary Figures 1–5, Supplementary Tables 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goyette, J.O., Bennett, E.M. & Maranger, R. Low buffering capacity and slow recovery of anthropogenic phosphorus pollution in watersheds. Nature Geosci 11, 921–925 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing