Abstract

Mountains are key features of the Earth’s surface and host a substantial proportion of the world’s species. However, the links between the evolution and distribution of biodiversity and the formation of mountains remain poorly understood. Here, we integrate multiple datasets to assess the relationships between species richness in mountains, geology and climate at global and regional scales. Specifically, we analyse how erosion, relief, soil and climate relate to the geographical distribution of terrestrial tetrapods, which include amphibians, birds and mammals. We find that centres of species richness correlate with areas of high temperatures, annual rainfall and topographic relief, supporting previous studies. We unveil additional links between mountain-building processes and biodiversity: species richness correlates with erosion rates and heterogeneity of soil types, with a varying response across continents. These additional links are prominent but under-explored, and probably relate to the interplay between surface uplift, climate change and atmospheric circulation through time. They are also influenced by the location and orientation of mountain ranges in relation to air circulation patterns, and how species diversification, dispersal and refugia respond to climate change. A better understanding of biosphere–lithosphere interactions is needed to understand the patterns and evolution of mountain biodiversity across space and time.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The datasets generated and analysed during the current study are available in the ZENODO repository https://doi.org/10.5281/zenodo.1341999.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Fjeldså, J., Bowie, R. C. K. & Rahbek, C. The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 43, 249–265 (2012).

  2. 2.

    Badgley, C. et al. Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends Ecol. Evol. 32, 211–226 (2017).

  3. 3.

    Hoorn, C., Mosbrugger, V., Mulch, A. & Antonelli, A. Biodiversity from mountain building. Nat. Geosci. 6, 154 (2013).

  4. 4.

    Eronen, J. T., Janis, C. M., Chamberlain, C. P. & Mulch, A. Mountain uplift explains differences in Palaeogene patterns of mammalian evolution and extinction between North America and Europe. Proc. R. Soc. B 282, 20150136 (2015).

  5. 5.

    Ebersbach, J. et al. In and out of the Qinghai-Tibet Plateau: divergence time estimation and historical biogeography of the large arctic-alpine genus Saxifraga L. J. Biogeogr. 44, 900–910 (2016).

  6. 6.

    Favre, A. et al. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236–253 (2015).

  7. 7.

    Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature 524, 347–350 (2015).

  8. 8.

    Kutzbach, J. E., Prell, W. L. & Ruddiman, W. F. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. J. Geol. 101, 177–190 (1993).

  9. 9.

    Hay, W. W., Soeding, E., DeConto, R. M. & Wold, C. N. The Late Cenozoic uplift - climate change paradox. Intl J. Earth Sci. 91, 746–774 (2002).

  10. 10.

    Mix, H. T., Winnick, M. J., Mulch, A. & Chamberlain, C. P. Grassland expansion as an instrument of hydrologic change in Neogene western North America. Earth Planet. Sci. Lett. 377–378, 73–83 (2013).

  11. 11.

    Mulch, A. Stable isotope paleoaltimetry and the evolution of landscapes and life. Earth Planet. Sci. Lett. 433, 180–191 (2016).

  12. 12.

    Rowley, D. B. & Garzione, C. N. Stable isotope-based paleoaltimetry. Annu. Rev. Earth Planet. Sci. 35, 463–508 (2007).

  13. 13.

    Herman, F. et al. Worldwide acceleration of mountain erosion under a cooling climate. Nature 504, 423–426 (2013).

  14. 14.

    The IUCN Red List of Threatened Species v.2013 (IUCN, 2013).

  15. 15.

    Hedges, S. B., Dudley, J. & Kumar, S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006).

  16. 16.

    Morlon, H. Phylogenetic approaches for studying diversification. Ecol. Lett. 17, 508–525 (2014).

  17. 17.

    Silvestro, D., Schnitzler, J., Liow, L. H., Antonelli, A. & Salamin, N. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. Syst. Biol. 63, 349–367 (2014).

  18. 18.

    Fritz, S. A. et al. Diversity in time and space: wanted dead and alive. Trends Ecol. Evol. 28, 509–516 (2013).

  19. 19.

    Craw, D., Upton, P., Burridge, C. P., Wallis, G. P. & Waters, J. M. Rapid biological speciation driven by tectonic evolution in New Zealand. Nat. Geosci. 9, 140–144 (2016).

  20. 20.

    Currie, D. J. Energy and large-scale patterns of animal- and plant-species richness. Am. Nat. 137, 27–49 (1991).

  21. 21.

    Hawkins, B. A. et al. Energy, water, and broad-scale geographical patterns of species richness. Ecology 84, 3105–3117 (2003).

  22. 22.

    Kerr, J. T. & Packer, L. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252–254 (1997).

  23. 23.

    Körner, C. Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol. Evol. 15, 513–514 (2000).

  24. 24.

    Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).

  25. 25.

    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007).

  26. 26.

    Ricklefs, R. E. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 7, 1–15 (2004).

  27. 27.

    Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).

  28. 28.

    Kissling, W. D. et al. Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proc. Natl Acad. Sci. USA 109, 7379–7384 (2012).

  29. 29.

    Fritz, S. A. et al. Twenty-million-year relationship between mammalian diversity and primary productivity. Proc. Natl Acad. Sci. USA 113, 10908–10913 (2016).

  30. 30.

    Kissling, W. D. et al. Quaternary and pre-Quaternary historical legacies in the global distribution of a major tropical plant lineage. Global Ecol. Biogeogr. 21, 909–921 (2012).

  31. 31.

    Mayhew, P. J., Bell, M. A., Benton, T. G. & McGowan, A. J. Biodiversity tracks temperature over time. Proc. Natl Acad. Sci. USA 109, 15141–15145 (2012).

  32. 32.

    Renner, S. S. Available data point to a 4-km-high Tibetan Plateau by 40 Ma, but 100 molecular-clock papers have linked supposed recent uplift to young node ages. J. Biogeogr. 43, 1479–1487 (2016).

  33. 33.

    Finarelli, J. A. & Badgley, C. Diversity dynamics of Miocene mammals in relation to the history of tectonism and climate. Proc. R. Soc. B 277, 2721–2726 (2010).

  34. 34.

    Hoorn, C. et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330, 927–931 (2010).

  35. 35.

    Jetz, W. & Rahbek, C. Geographic range size and determinants of avian species richness. Science 297, 1548–1551 (2002).

  36. 36.

    Rahbek, C. et al. Predicting continental-scale patterns of bird species richness with spatially explicit models. Proc. R. Soc. B 274, 165–174 (2007).

  37. 37.

    Hughes, C. E. & Atchison, G. W. The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains. New. Phytol. 207, 275–282 (2015).

  38. 38.

    Grenyer, R. et al. Global distribution and conservation of rare and threatened vertebrates. Nature 444, 93–96 (2006).

  39. 39.

    Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Botany 127, 1–15 (2017).

  40. 40.

    Field, R. et al. Spatial species-richness gradients across scales: a meta-analysis. J. Biogeogr. 36, 132–147 (2009).

  41. 41.

    McCain, C. M. & Grytnes, J.-A. Elevational Gradients in Species Richness (John Wiley & Sons, Chichester, 2010).

  42. 42.

    Pearse, W. D. et al. Building up biogeography: pattern to process. J. Biogeogr. 45, 1223–1230 (2018).

  43. 43.

    Mulch, A., Uba, C. E., Strecker, M. R., Schoenberg, R. & Chamberlain, C. P. Late Miocene climate variability and surface elevation in the central Andes. Earth Planet. Sci. Lett. 290, 173–182 (2010).

  44. 44.

    Poulsen, C. J., Ehlers, T. A. & Insel, N. Onset of convective rainfall during gradual late Miocene rise of the Central Andes. Science 328, 490–493 (2010).

  45. 45.

    Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).

  46. 46.

    Price, T. D. et al. Niche filling slows the diversification of Himalayan songbirds. Nature 509, 222–225 (2014).

  47. 47.

    Flantua, S. G. A. et al. in Paleobotany and Biogeography: A Festschrift for Alan Graham in His 80th Year (eds Stevens, W. D., Montiel, O. M. & Raven, P. H.) 98–123 (Missouri Botanical Garden, St. Louis, 2014).

  48. 48.

    Flantua, S. G. A. & Hooghiemstra, H. in Mountains, Climate and Biodiversity (eds Hoorn, C., Perrigo, A. & Antonelli, A.) 171–185 (Wiley-Blackwell, Hoboken, 2018).

  49. 49.

    Herman, F. & Champagnac, J.-D. Plio-Pleistocene increase of erosion rates in mountain belts in response to climate change. Terra Nova 28, 2–10 (2016).

  50. 50.

    Whittaker, R. J., Triantis, K. A. & Ladle, R. J. A general dynamic theory of oceanic island biogeography. J. Biogeogr. 35, 977–994 (2008).

  51. 51.

    Baldwin, J. A., Bowring, S. A. & Williams, M. L. Petrological and geochronological constraints on high pressure, high temperature metamorphism in the Snowbird tectonic zone, Canada. J. Metamorph. Geol. 21, 81–98 (2003).

  52. 52.

    Beck, J. & Kitching, I. J. Drivers of moth species richness on tropical altitudinal gradients: a cross-regional comparison. Glob. Ecol. Biogeogr. 18, 361–371 (2009).

  53. 53.

    Barnagaud, J.-Y. et al. Ecological traits influence the phylogenetic structure of bird species co-occurrences worldwide. Ecol. Lett. 17, 811–820 (2014).

  54. 54.

    Díaz, S. et al. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3, 2958–2975 (2013).

  55. 55.

    Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92, 698–715 (2016).

  56. 56.

    Lewin, H. A. et al. Earth BioGenome Project: sequencing life for the future of life. Proc. Natl Acad. Sci. USA 115, 4325–4333 (2018).

  57. 57.

    Baker, P. A. et al. The emerging field of geogenomics: constraining geological problems with genetic data. Earth Sci. Rev. 135, 38–47 (2014).

  58. 58.

    Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A. & Davis, C. C. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol. 210, 1430–1442 (2016).

  59. 59.

    Graham, C. H. et al. The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography 37, 711–719 (2014).

  60. 60.

    Gallen, S. F. Lithologic controls on landscape dynamics and aquatic species evolution in post-orogenic mountains. Earth Planet. Sci. Lett. 493, 150–160 (2018).

  61. 61.

    Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).

  62. 62.

    Rahbek, C., Hansen, L. A. & Fjeldså, J. One Degree Resolution Database of the Global Distribution of Birds. (The Natural History Museum of Denmark, University of Copenhagen, Denmark, 2012).

  63. 63.

    Molnar, P. Mountain - Landform (Encyclopedia Britannica, Chicago, 2015).

  64. 64.

    Gordon, J. E. in Mountains, Climate and Biodiversity (eds. Hoorn, C., Perrigo, A. & Antonelli, A.) 137–154 (Wiley-Blackwell, Hoboken, 2018).

  65. 65.

    Hoorn, C., Perrigo, A. & Antonelli, A. (eds) in Mountains, Climate and Biodiversity 1–13 (Wiley-Blackwell, Hoboken, 2018).

  66. 66.

    Reiners, P. W. & Brandon, M. T. Using thermochronology to understand orogenic erosion. Annu. Rev. Earth Planet. Sci. 34, 419–466 (2006).

  67. 67.

    Champagnac, J.-D., Valla, P. G. & Herman, F. Late-Cenozoic relief evolution under evolving climate: a review. Tectonophysics 614, 44–65 (2014).

  68. 68.

    Insel, N., Poulsen, C. J. & Ehlers, T. A. Influence of the Andes Mountains on South American moisture transport, convection, and precipitation. Clim. Dynam. 35, 1477–1492 (2010).

  69. 69.

    Garreaud, R. D., Molina, A. & Farias, M. Andean uplift, ocean cooling and Atacama hyperaridity: a climate modeling perspective. Earth Planet. Sci. Lett. 292, 39–50 (2010).

  70. 70.

    Barthlott, W., Mutke, J., Rafiqpoor, D., Kier, G. & Kreft, H. Global centers of vascular plant diversity. Nova Acta Leopoldina NF 92, 61–83 (2005).

  71. 71.

    Körner, C. Alpine ecosystems. eLS (2007); https://doi.org/10.1002/9780470015902.a0003492.pub2

  72. 72.

    von Humboldt, A. & Bonpland, A. Essai sur la Géographie des Plantes; Accompagné d’un Tableau Physique des Régions Équinoxiales (Chez Levrault, Schoell et compagnie, Paris, 1805).

  73. 73.

    Purvis, A. & Hector, A. Getting the measure of biodiversity. Nature 405, 212–219 (2000).

  74. 74.

    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

  75. 75.

    Mace, G. M., Gittleman, J. L. & Purvis, A. Preserving the tree of life. Science 300, 1707–1709 (2003).

  76. 76.

    Whittaker, R. H. Evolution and measurement of species diversity. Taxon 21, 213–251 (1972).

  77. 77.

    Tuomisto, H. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33, 2–22 (2010).

  78. 78.

    Kreft, H., Sommer, J. H. & Barthlott, W. The significance of geographic range size for spatial diversity patterns in Neotropical palms. Ecography 29, 21–30 (2006).

  79. 79.

    Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221 (2015).

  80. 80.

    Franklin, J. & Miller, J. A. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge Univ. Press, Cambridge, 2009).

  81. 81.

    Global Amphibian Assessment (Conservation International, IUCN, NatureServe, 2008).

  82. 82.

    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

  83. 83.

    ArcGIS Desktop (Environmental Systems Research Institute, 2014).

  84. 84.

    Robinson, N., Regetz, J. & Guralnick, R. P. EarthEnv-DEM90: a nearly-global, void-free, multi-scale smoothed, 90m digital elevation model from fused ASTER and SRTM data. ISPRS J. Photogramm. Remote Sens. 87, 57–67 (2014).

  85. 85.

    Willenbring, J. K., Codilean, A. T., Ferrier, K. L., McElroy, B. & Kirchner, J. W. Short communication: Earth is (mostly) flat, but mountains dominate global denudation: apportionment of the continental mass flux over millennial time scales, revisited. Earth Surf. Dynam. Discuss. 2, 1–17 (2014).

  86. 86.

    Fox, M., Herman, F., Willett, S. D. & May, D. A. A linear inversion method to infer exhumation rates in space and time from thermochronometric data. Earth Surf. Dynam. 2, 47–65 (2014).

  87. 87.

    Finlayson, D. P., Montgomery, D. R. & Hallet, B. Spatial coincidence of rapid inferred erosion with young metamorphic massifs in the Himalayas. Geology 30, 219–222 (2002).

  88. 88.

    Whipple, K. X. & Tucker, G. E. Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. 104, 17661–17674 (1999).

  89. 89.

    Wilson, J. P. & Gallant, J. C. Terrain Analysis: Principles and Applications (John Wiley & Sons, New York, 2000).

  90. 90.

    Wobus, C. et al. Tectonics from topography: procedures, promise, and pitfalls. Geol. Soc. Spec. Papers 398, 55–74 (2006).

  91. 91.

    Bizzi, S. & Lerner, D. N. The use of stream power as an indicator of channel sensitivity to erosion and deposition processes. River Res. Applic. 31, 16–27 (2015).

  92. 92.

    Anderson, R. S. & Anderson, S. P. Geomorphology: The Mechanics and Chemistry of Landscapes (Cambridge Univ. Press, Cambridge, 2010).

  93. 93.

    Tucker, G. E. & Whipple, K. X. Topographic outcomes predicted by stream erosion models: sensitivity analysis and intermodel comparison. J. Geophys. Res. 107, 2179 (2002).

  94. 94.

    New, M., Hulme, M. & Jones, P. Representing twentieth-century space–time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J. Climate 13, 2217–2238 (2000).

  95. 95.

    Bookhagen, B. High Resolution Spatiotemporal Distribution of Rainfall Seasonality and Extreme Events Based on a 12-year TRMM Time Series (UC Santa Barbara Geography, 2013).

  96. 96.

    Hengl, T. et al. SoilGrids1km — global soil information based on automated mapping. PLoS ONE 9, e105992 (2014).

  97. 97.

    World Reference Base for Soil Resources, 2006: A Framework for International Classification, Correlation, and Communication (FAO, 2006).

  98. 98.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference - A Practical Information - Theoretic Approach (Springer-Verlag, New York, 2002).

  99. 99.

    Crawley, M. J. The R Book (John Wiley & Sons, Chichester, 2007).

  100. 100.

    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, Amsterdam, 1998).

  101. 101.

    Kissling, W. D. & Carl, G. Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob. Ecol. Biogeogr. 17, 59–71 (2008).

  102. 102.

    Faurby, S. & Svenning, J.-C. Historic and prehistoric human-driven extinctions have reshaped global mammal diversity patterns. Diversity Distrib. 21, 1155–1166 (2015).

  103. 103.

    Rahbek, C. & Graves, G. R. Multiscale assessment of patterns of avian species richness. Proc. Natl Acad. Sci. USA 98, 4534–4539 (2001).

Download references

Acknowledgements

We thank A. Rohrmann, R. Moucha, V. Mosbrugger, F. Condamine, C. Bacon and J. Anderson for discussions and support. Funding for this work was provided by the Swedish Research Council (B0569601), the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013, ERC Grant Agreement n. 331024), the Swedish Foundation for Strategic Research, the Biodiversity and Ecosystems in a Changing Climate (BECC) programme, the Faculty of Sciences at the University of Gothenburg, the Wenner-Gren Foundations, the David Rockefeller Center for Latin American Studies at Harvard University, and a Wallenberg Academy Fellowship to A.A.; a German Science Foundation DFG grant Mu2845/6-1 and an A. Cox Fellowship (Stanford University) to A.M.; a University of Amsterdam starting grant to W.D.K.; the Universidad de Ibagué (Project 15-377-INT), the Institut de Recherche pour le Développement (IRD) for the BEST Project, and the Universidad Pedagógica y Tecnológica de Colombia (UPTC) Project SGI-2417 to M.A.B.; a Netherlands Organization for Scientific Research (NWO) grant (2012/13248/ALW) to S.G.A.F and H.H.; a German Science Foundation DFG grant (FR 3246/2-1) to S.A.F; German Science Foundation DFG grants MU 2934/2-1 and MU 2934/3-1 (PAK 807) to A.N.M.-R.; and the sFossil workshop at the Synthesis Centre for Biodiversity Sciences sDiv (DFG grant FZT 118).

Author information

Author notes

  1. These authors contributed equally: Alexandre Antonelli, W. Daniel Kissling, Suzette G. A. Flantua, Mauricio A. Bermúdez, Carina Hoorn.

Affiliations

  1. Gothenburg Global Biodiversity Centre, Göteborg, Sweden

    • Alexandre Antonelli
  2. Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden

    • Alexandre Antonelli
  3. Gothenburg Botanical Garden, Göteborg, Sweden

    • Alexandre Antonelli
  4. Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA

    • Alexandre Antonelli
  5. Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands

    • W. Daniel Kissling
    • , Suzette G. A. Flantua
    • , Henry Hooghiemstra
    •  & Carina Hoorn
  6. Department of Biological Sciences, University of Bergen, Bergen, Norway

    • Suzette G. A. Flantua
  7. Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Tolima, Colombia

    • Mauricio A. Bermúdez
  8. School of Geological Engineering, Sectional Faculty Sogamoso, Pedagogical and Technological University of Colombia, Sogamoso, Colombia

    • Mauricio A. Bermúdez
  9. Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt/Main, Germany

    • Andreas Mulch
    •  & Susanne A. Fritz
  10. Institute of Geosciences, Goethe University Frankfurt, Frankfurt/Main, Germany

    • Andreas Mulch
  11. Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Institute of Biology, Leipzig University, Leipzig, Germany

    • Alexandra N. Muellner-Riehl
  12. German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany

    • Alexandra N. Muellner-Riehl
  13. Biodiversity, Macroecology & Biogeography, University of Göttingen, Göttingen, Germany

    • Holger Kreft
  14. Centre of Biodiversity and Sustainable Landuse, University of Göttingen, Göttingen, Germany

    • Holger Kreft
  15. Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland

    • H. Peter Linder
  16. Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA

    • Catherine Badgley
  17. Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark

    • Jon Fjeldså
    •  & Carsten Rahbek
  18. Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt/Main, Germany

    • Susanne A. Fritz
  19. Department of Life Sciences, Imperial College London, Silwood Park campus, Ascot, UK

    • Carsten Rahbek
  20. Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland

    • Frédéric Herman

Authors

  1. Search for Alexandre Antonelli in:

  2. Search for W. Daniel Kissling in:

  3. Search for Suzette G. A. Flantua in:

  4. Search for Mauricio A. Bermúdez in:

  5. Search for Andreas Mulch in:

  6. Search for Alexandra N. Muellner-Riehl in:

  7. Search for Holger Kreft in:

  8. Search for H. Peter Linder in:

  9. Search for Catherine Badgley in:

  10. Search for Jon Fjeldså in:

  11. Search for Susanne A. Fritz in:

  12. Search for Carsten Rahbek in:

  13. Search for Frédéric Herman in:

  14. Search for Henry Hooghiemstra in:

  15. Search for Carina Hoorn in:

Contributions

C.H., A.A. and A.M. initiated the project; A.A., C.H., W.D.K. and S.G.A.F. coordinated the work and led the writing with contributions from M.A.B, A.M., A.N.M.-R., H.K., H.P.L., C.B., J.F., S.A.F., C.R., F.H. and H.H.; C.R. provided access to the bird data; S.G.A.F, M.A.B and S.A.F. compiled, cleaned and standardized all data; W.D.K. performed all analyses.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Alexandre Antonelli or W. Daniel Kissling or Carina Hoorn.

Supplementary information

  1. Supplementary Information

    Supplementary Discussion, Supplementary Tables 1–5, Supplementary Figures 1–11.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41561-018-0236-z