Abstract

Pulses of warm and moist air from lower latitudes provide energy to the Arctic and form its main energy source outside of the summer months. These pulses can cause substantial surface warming and trigger ice melt. Air-mass transport in the opposite direction, away from the Arctic, leads to cold-air outbreaks. The outbreaks are often associated with cold extremes over continents, and extreme surface heat fluxes and occasional polar lows over oceans. Air masses advected across the strong Arctic-to-mid-latitude temperature gradient are rapidly transformed into colder and dryer or warmer and moister air masses by clouds, radiative and turbulent processes, particularly in the boundary layer. Phase changes from liquid to ice within boundary-layer clouds are critical in these air-mass transformations. The presence of liquid water determines the radiative effects of these clouds, whereas the presence of ice is crucial for subsequent cloud decay or dissipation, processes that are poorly represented in weather and climate models. We argue that a better understanding of how air masses are transformed on their way into and out of the Arctic is essential for improved prediction of weather and climate in the Arctic and mid-latitudes. Observational and modelling exercises should take an air-mass-following Lagrangian approach to attain these goals.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

ERA-Interim data for Fig. 1 have been obtained from the European Centre for Medium-range Weather Forecasts’ (ECMWF) data server. The satellite image in Fig. 2 is from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite, provided by the National Aeronautics and Space Administration (NASA) via https://earthdata.nasa.gov

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Laliberté, F. et al. Constrained work output of the moist atmospheric heat engine in a warming climate. Science 347, 540–543 (2015).

  2. 2.

    Pauluis, O., Czaja, A. & Korty, R. The global atmospheric circulation on moist isentropes. Science 321, 1075–1078 (2008).

  3. 3.

    Pithan, F. & Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 7, 181–184 (2014).

  4. 4.

    Serreze, M., Barrett, A., Stroeve, J., Kindig, D. & Holland, M. The emergence of surface-based Arctic amplification. Cryosphere 3, 11–19 (2009).

  5. 5.

    Masson-Delmotte, V. et al. Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints. Clim. Dyn. 26, 513–529 (2006).

  6. 6.

    Holland, M. & Bitz, C. Polar amplification of climate change in coupled models. Clim. Dyn. 21, 221–232 (2003).

  7. 7.

    Doyle, J. G. et al. Water vapor intrusions into the High Arctic during winter. Geophys. Res. Lett. 38, L12806 (2011).

  8. 8.

    Woods, C., Caballero, R. & Svensson, G. Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett. 40, 4717–4721 (2013).

  9. 9.

    Liu, C. & Barnes, E. A. Extreme moisture transport into the Arctic linked to rossby wave breaking. J. Geophys. Res. Atmos. 120, 3774–3788 (2015).

  10. 10.

    Sedlar, J. & Tjernström, M. Clouds, warm air, and a climate cooling signal over the summer Arctic. Geophys. Res. Lett. 44, 1095–1103 (2017).

  11. 11.

    Messori, G., Woods, C. & Caballero, R. On the drivers of wintertime temperature extremes in the High Arctic. J. Climate 31, 1597–1618 (2018).

  12. 12.

    Kapsch, M.-L., Graversen, R. G. & Tjernström, M. Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nat. Clim. Change 3, 744–748 (2013).

  13. 13.

    Mortin, J. et al. Melt onset over Arctic sea ice controlled by atmospheric moisture transport. Geophys. Res. Lett. 43, 6636–6642 (2016).

  14. 14.

    Solomon, A., Shupe, M. D. & Miller, N. B. Cloud-atmospheric boundary layer-surface interactions on the Greenland ice sheet during the July 2012 extreme melt event. J. Climate 30, 3237–3252 (2017).

  15. 15.

    Wexler, H. Cooling in the lower atmosphere and the structure of polar continental air. Mon. Weather Rev. 64, 122–136 (1936).

  16. 16.

    Curry, J. On the formation of continental polar air. J. Atmos. Sci. 40, 2278–2292 (1983).

  17. 17.

    Morrison, H. et al. Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci. 4, 11–17 (2012).

  18. 18.

    Shupe, M. et al. Cloud and boundary layer interactions over the Arctic sea ice in late summer. Atmos. Chem. Phys 13, 9379–9399 (2013).

  19. 19.

    Brümmer, B. Boundary-layer modification in wintertime cold-air outbreaks from the arctic sea ice. Bound.-Layer Meteor. 80, 109–125 (1996).

  20. 20.

    Kolstad, E. W., Bracegirdle, T. J. & Seierstad, I. A. Marine cold-air outbreaks in the north Atlantic: temporal distribution and associations with large-scale atmospheric circulation. Clim. Dyn. 33, 187–197 (2009).

  21. 21.

    Brümmer, B. & Pohlmann, S. Wintertime roll and cell convection over Greenland and Barents sea regions: a climatology. J. Geophys. Res. Atmos. 105, 15559–15566 (2000).

  22. 22.

    Walsh, J. E., Phillips, A. S., Portis, D. H. & Chapman, W. L. Extreme cold outbreaks in the United States and Europe, 1948-99. J. Climate 14, 2642–2658 (2001).

  23. 23.

    Kretschmer, M. et al. More-persistent weak stratospheric polar vortex states linked to cold extremes. Bull. Am. Meteor. Soc. 99, 49–60 (2017).

  24. 24.

    Cohen, J. et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7, 627–637 (2014).

  25. 25.

    Overland, J., Wang, M. & Salo, S. The recent Arctic warm period. Tellus A 60, 589–597 (2008).

  26. 26.

    Pithan, F., Medeiros, B. & Mauritsen, T. Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions. Clim. Dyn. 43, 289–303 (2014).

  27. 27.

    Tomassini, L. et al. The ‘grey zone’ cold air outbreak global model intercomparison: a cross evaluation using large-eddy simulations. J. Adv. Model. Earth Sys. 9, 39–64 (2017).

  28. 28.

    Jung, T. et al. Advancing polar prediction capabilities on daily to seasonal time scales. Bull. Am. Meteor. Soc 97, 1631–1647 (2016).

  29. 29.

    Woods, C. & Caballero, R. The role of moist intrusions in winter Arctic warming and sea ice decline. J. Climate 29, 4473–4485 (2016).

  30. 30.

    Gimeno, L., Nieto, R., Vázquez, M. & Lavers, D. Atmospheric rivers: a mini-review. Front. Earth Science 2, 2 (2014).

  31. 31.

    Johansson, E., Devasthale, A., Tjernström, M., Ekman, A. M. & L’Ecuyer, T. Response of the lower troposphere to moisture intrusions into the Arctic. Geophys. Res. Lett. 44, 2527–2536 (2017).

  32. 32.

    Tjernström, M. et al. Warm-air advection, air mass transformation and fog causes rapid ice melt. Geophys. Res. Lett. 42, 5594–5602 (2015).

  33. 33.

    Pithan, F. et al. Select strengths and biases of models in representing the arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison. J. Adv. Model. Earth Syst. 8, 1345–1357 (2016).

  34. 34.

    Park, D.-S. R., Lee, S. & Feldstein, S. B. Attribution of the recent winter sea ice decline over the Atlantic sector of the Arctic ocean. J. Climate 28, 4027–4033 (2015).

  35. 35.

    Persson, P. O. G., Shupe, M. D., Perovich, D. & Solomon, A. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions. Clim. Dyn. 49, 1341–1364 (2017).

  36. 36.

    Kapsch, M.-L., Graversen, R. G., Tjernström, M. & Bintanja, R. The effect of downwelling longwave and shortwave radiation on Arctic summer sea ice. J. Climate 29, 1143–1159 (2016).

  37. 37.

    Nghiem, S. et al. The extreme melt across the Greenland ice sheet in 2012. Geophys. Res. Lett. 39, L20502 (2012).

  38. 38.

    Bennartz, R. et al. July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature 496, 83–86 (2013).

  39. 39.

    Emanuel, K. in Synoptic—Dynamic Meteorology and Weather Analysis and Forecasting (eds Bosart, L. & Bluestein, H.) 87–96 (Springer, New York, 2008).

  40. 40.

    Brooks, I. M. et al. The turbulent structure of the Arctic summer boundary layer during the Arctic summer cloud-ocean study. J. Geophys. Res. Atmos. 122, 9685–9704 (2017).

  41. 41.

    Shupe, M. D. et al. Clouds at Arctic atmospheric observatories. Part I: Occurrence and macrophysical properties. J. Appl. Meteorol. Climatol. 50, 626–644 (2011).

  42. 42.

    Solomon, A. et al. The sensitivity of springtime Arctic mixed-phase stratocumulus clouds to surface layer and cloud-top inversion layer moisture sources. J. Atmos. Sci. 71, 574–595 (2014).

  43. 43.

    Solomon, A., Feingold, G. & Shupe, M. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus. Atmos. Chem. Phys. 15, 10631–10643 (2015).

  44. 44.

    Loewe, K. et al. Modelling micro-and macrophysical contributors to the dissipation of an Arctic mixed-phase cloud during the arctic summer cloud ocean study (ASCOS). Atmos. Chem. Phys. 17, 6693–6704 (2017).

  45. 45.

    Stevens, R. G. et al. A model intercomparison of CCN-limited tenuous clouds in the High Arctic. Atmos. Chem. Phys. 18, 11041–11071 (2017).

  46. 46.

    Turner, J. K. & Gyakum, J. R. The development of Arctic air masses in Northwest Canada and their behaviour in a warming climate. J. Climate 24, 4818–4633 (2011).

  47. 47.

    Cronin, T. W., Li, H. & Tziperman, E. Suppression of Arctic air formation with climate warming: investigation with a two-dimensional cloud-resolving model. J. Atmos. Sci. 74, 2717–2736 (2017).

  48. 48.

    Shupe, M. D. & Intrieri, J. M. Cloud radiative forcing of the Arctic surface: the influence of cloud properties, surface albedo, and solar zenith angle. J. Climate 17, 616–628 (2004).

  49. 49.

    Ovchinnikov, M. et al. Intercomparison of large-eddy simulations of Arctic mixed-phase clouds: importance of ice size distribution assumptions. J. Adv. Model. Earth Syst. 6, 223–248 (2014).

  50. 50.

    Sedlar, J., Shupe, M. D. & Tjernström, M. On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic. J. Climate 25, 2374–2393 (2012).

  51. 51.

    Igel, A. L. et al. The free troposphere as a potential source of Arctic boundary layer aerosol particles. Geophys. Res. Lett. 44, 7053–7060 (2017).

  52. 52.

    Fletcher, J., Mason, S. & Jakob, C. The climatology, meteorology, and boundary layer structure of marine cold air outbreaks in both hemispheres. J. Climate 29, 1999–2014 (2016).

  53. 53.

    Chechin, D. G. & Lüpkes, C. Bound-layer development and low-level baroclinicity during high-latitude cold-air outbreaks: a simple model. Bound.-Layer Meteor. 162, 91–116 (2017).

  54. 54.

    Papritz, L. & Spengler, T. A lagrangian climatology of wintertime cold air outbreaks in the Irminger and Nordic seas and their role in shaping air–sea heat fluxes. J. Climate 30, 2717–2737 (2017).

  55. 55.

    Gryschka, M., Fricke, J. & Raasch, S. On the impact of forced roll convection on vertical turbulent transport in cold air outbreaks. J. Geophys. Res. Atmos. 119, 12513–12532 (2014).

  56. 56.

    Field, P. et al. Improving a convection-permitting model simulation of a cold air outbreak. Q. J. Roy. Meteor. Soc. 140, 124–138 (2014).

  57. 57.

    Brümmer, B. Roll and cell convection in wintertime Arctic cold-air outbreaks. J. Atmos. Sci. 56, 2613–2636 (1999).

  58. 58.

    Abel, S. J. et al. The role of precipitation in controlling the transition from stratocumulus to cumulus clouds in a northern hemisphere cold-air outbreak. J. Atmos. Sci. 74, 2293–2314 (2017).

  59. 59.

    Kristovich, D. et al. The ontario winter lake-effect systems field campaign: Scientific and educational adventures to further our knowledge and prediction of lake-effect storms. Bull. Am. Meteor. Soc. 98, 315–332 (2017).

  60. 60.

    Wang, Y., Geerts, B. & Chen, Y. Vertical structure of boundary layer convection during cold-air outbreaks at Barrow, Alaska. J. Geophys. Res. Atmos 121, 399–412 (2016).

  61. 61.

    Marshall, J. & Schott, F. Open-ocean convection: observations, theory, and models. Rev. Geophys. 37, 1–64 (1999).

  62. 62.

    Smedsrud, L. H. et al. The role of the Barents sea in the Arctic climate system. Rev. Geophys. 51, 415–449 (2013).

  63. 63.

    Guest, P. S., Davidson, K. L., Overland, J. E. & Frederickson, P. A. in Arctic Oceanography: Marginal Ice Zones and Continental Shelves (eds Smith, W. O. Jr. & Grebmeir, J. M.) 51–95 (AGU, Washington DC, 1995).

  64. 64.

    Moore, G., Bromwich, D. H., Wilson, A. B., Renfrew, I. & Bai, L. Arctic system reanalysis improvements in topographically forced winds near Greenland. Q. J. Roy. Meteor. Soc 142, 2033–2045 (2016).

  65. 65.

    Chechin, D., Lüpkes, C., Repina, I. & Gryanik, V. Idealized dry quasi 2-d mesoscale simulations of cold-air outbreaks over the marginal sea ice zone with fine and coarse resolution. J. Geophys. Res. Atmos. 118, 8787–8813 (2013).

  66. 66.

    McInnes, H., Kristjánsson, J. E., Rahm, S., Røsting, B. & Schyberg, H. An observational study of an Arctic front during the IPY-Thorpex 2008 campaign. Q. J. Roy. Meteor. Soc. 139, 2134–2147 (2013).

  67. 67.

    Kolstad, E. W. Extreme small-scale wind episodes over the Barents sea: when, where and why? Clim. Dyn. 45, 2137–2150 (2015).

  68. 68.

    Sergeev, D. E., Renfrew, I. A., Spengler, T. & Dorling, S. R. Structure of a shear-line polar low. Q. J. Roy. Meteor. Soc 143, 12–26 (2017).

  69. 69.

    DuVivier, A. et al. Winter atmospheric buoyancy forcing and oceanic response during strong wind events around southeastern Greenland in the regional Arctic system model (RASM) for 1990–2010. J. Climate 29, 975–994 (2016).

  70. 70.

    Condron, A. & Renfrew, I. The impact of polar mesoscale storms on northeast Atlantic ocean circulation. Nat. Geosci. 6, 34–37 (2013).

  71. 71.

    Solomon, A., Morrison, H., Persson, P. O. G., Shupe, M. D. & Bao, J.-W. Investigation of microphysical parameterizations of snow and ice in Arctic clouds during M-PACE through model-observation comparisons. Mon. Weather Rev. 137, 3110–3128 (2009).

  72. 72.

    Bodas-Salcedo, A. et al. Large contribution of supercooled liquid clouds to the solar radiation budget of the Southern ocean. J. Climate 29, 4213–4228 (2016).

  73. 73.

    Konrad, C. E. & Colucci, S. J. An examination of extreme cold air outbreaks over eastern North America. Mon. Weather Rev. 117, 2687–2700 (1989).

  74. 74.

    Ellis, A. W. & Leathers, D. J. A quantitative approach to evaluating the effects of snow cover on cold airmass temperatures across the US great plains. Weather Forecast. 13, 688–701 (1998).

  75. 75.

    Yihui, D. Build-up, air mass transformation and propagation of siberian high and its relations to cold surge in east Asia. Meteor. Atmos. Phys. 44, 281–292 (1990).

  76. 76.

    Iwasaki, T. et al. Isentropic analysis of polar cold airmass streams in the Northern Hemispheric winter. J. Atmos. Sci. 71, 2230–2243 (2014).

  77. 77.

    Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Climate 19, 5686–5699 (2006).

  78. 78.

    Cronin, T. W. & Tziperman, E. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming. Proc. Natl Acad. Sci. USA 112, 11490–11495 (2015).

  79. 79.

    Screen, J. A. Arctic amplification decreases temperature variance in northern mid-to high-latitudes. Nat. Clim. Change 4, 577 (2014).

  80. 80.

    Gao, Y., Leung, L. R., Lu, J. & Masato, G. Persistent cold air outbreaks over North America in a warming climate. Environ. Res. Lett. 10, 044001 (2015).

  81. 81.

    Kolstad, E. W. & Bracegirdle, T. J. Marine cold-air outbreaks in the future: an assessment of IPCC AR4 model results for the Northern hemisphere. Clim. Dyn. 30, 871–885 (2008).

  82. 82.

    Polyakov, I. V. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian basin of the Arctic ocean. Science 356, 285–291 (2017).

  83. 83.

    Tetzlaff, A. et al. Brief communication: trends in sea ice extent north of Svalbard and its impact on cold air outbreaks as observed in spring 2013. Cryosphere 8, 1757–1762 (2014).

  84. 84.

    Zahn, M. & von Storch, H. Decreased frequency of North Atlantic polar lows associated with future climate warming. Nature 467, 309–312 (2010).

  85. 85.

    Bony, S. et al. Clouds, circulation and climate sensitivity. Nat. Geosci. 8, 261–268 (2015).

  86. 86.

    Curry, J. Interactions among turbulence, radiation and microphysics in Arctic stratus clouds. J. Atmos. Sci. 43, 90–106 (1986).

  87. 87.

    Intrieri, J., Shupe, M., Uttal, T. & McCarty, B. An annual cycle of arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res. Oceans https://doi.org/10.1029/2000JC000423 (2002).

  88. 88.

    Cavallo, S. M. & Hakim, G. J. Composite structure of tropopause polar cyclones. Mon. Weather Rev. 138, 3840–3857 (2010).

  89. 89.

    Bony, S. et al. Eurec4a: a field campaign to elucidate the couplings between clouds, convection and circulation. Surv. Geophys. 38, 1529–1568 (2017).

  90. 90.

    Kolstad, E. W., Breiteig, T. & Scaife, A. A. The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Q. J. Roy. Meteor. Soc. 136, 886–893 (2010).

  91. 91.

    Baggett, C. & Lee, S. Arctic warming induced by tropically forced tapping of available potential energy and the role of the planetary-scale waves. J. Atmos. Sci. 72, 1562–1568 (2015).

  92. 92.

    Park, H.-S., Lee, S., Son, S.-W., Feldstein, S. B. & Kosaka, Y. The impact of poleward moisture and sensible heat flux on Arctic winter sea ice variability. J. Climate 28, 5030–5040 (2015).

  93. 93.

    Albrecht, B. A., Bretherton, C. S., Johnson, D., Scubert, W. H. & Frisch, A. S. The Atlantic stratocumulus transition experiment—ASTEX. Bull. Am. Meteor. Soc. 76, 889–904 (1995).

  94. 94.

    Neggers, R. et al. Single-column model simulations of subtropical marine boundary-layer cloud transitions under weakening inversions. J. Adv. Model. Earth Sys. 9, 2385–2412 (2017).

  95. 95.

    Goessling, H. F. et al. Paving the way for the year of polar prediction. Bull. Am. Meteor. Soc. 97, ES85–ES88 (2016).

  96. 96.

    Hartung, K., Svensson, G., Struthers, H., Deppenmeier, A.-L. & Hazeleger, W. An EC-Earth coupled atmosphere-ocean single-column model (AOSCM) for studying coupled marine and polar processes. Geosci. Model Dev. Discuss. https://doi.org/10.5194/gmd-2018-66 (2018).

  97. 97.

    Binder, H. et al. Exceptional air mass transport and dynamical drivers of an extreme wintertime Arctic warm event. Geophys. Res. Lett. 44, 28–36 (2017).

  98. 98.

    Dee, D. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteor. Soc. 137, 553–597 (2011).

  99. 99.

    Wacker, U., Potty, K. J., Lüpkes, C., Hartmann, J. & Raschendorfer, M. A case study on a polar cold air outbreak over Fram strait using a mesoscale weather prediction model. Bound.-Layer Meteor. 117, 301–336 (2005).

  100. 100.

    Uttal, T. et al. Surface heat budget of the Arctic ocean. Bull. Am. Meteor. Soc. 83, 255–275 (2002).

  101. 101.

    Tjernström, M. et al. The Arctic summer cloud ocean study (ASCOS): overview and experimental design. Atmos. Chem. Phys. 14, 2823–2869 (2014).

  102. 102.

    Physical Feedback of Arctic PBL, Sea Ice, Cloud and Aerosol (PASCAL); http://www.ac3-tr.de/news/pascal-campaign

  103. 103.

    Curry, J. et al. Fire Arctic clouds experiment. Bull. Am. Meteor. Soc. 81, 5–29 (2000).

  104. 104.

    Arctic Mechanisms of Interaction Between the Sea and Atmosphere (AMISA, 2008); https://www.nasa.gov/centers/dryden/home/AMISA_mission_science_report.html

  105. 105.

    Arctic Cloud Observations Using Airborne Measurements During Polar Day; http://www.ac3-tr.de/overview/observations/acloud

  106. 106.

    Multidisciplinary Drifting Observatory for the Study of Arctic Climate; http://www.mosaicobservatory.org

  107. 107.

    Comble (Cold-Air Outbreaks in the Marine Boundary Layer Experiment); https://www.arm.gov/research/campaigns/amf2017comble

  108. 108.

    Wendisch, M. et al. ACRIDICON–CHUVA campaign: studying tropical deep convective clouds and precipitation over Amazonia using the new German research aircraft HALO. Bull. Am. Meteor. Soc. 97, 1885–1908 (2016).

  109. 109.

    Laursen, K. K., Jorgensen, D. P., Brasseur, G. P., Ustin, S. L. & Huning, J. R. Hiaper: The next generation NSF/NCAR research aircraft. Bull. Am. Meteor. Soc. 87, 896–909 (2006).

  110. 110.

    Illingworth, A. J. et al. The earthcare satellite: the next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Am. Meteor. Soc. 96, 1311–1332 (2015).

Download references

Acknowledgements

We would like to thank all participants of the 2017 workshop on Arctic air-mass transformations in Stockholm for their contributions, and the International Meteorological Institute at Stockholm University and the Helmholtz Association for sponsoring the workshop. Parts of Fig. 2 have been adapted from https://www.mpimet.mpg.de/en/science/the-land-in-the-earth-system/modelling-of-boundary-layer-processes/les-of-cold-air-outbreaks/. We acknowledge support from the Helmholtz Society through the grant ‘Understanding the role of atmosphere-surface coupling for large-scale dynamics’ (F.P.), the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) within the Transregional Collaborative Research Center (TR 172) ‘ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3’ (D.C.,R.N. and M.W.) and from the U.S. Department of Energy (DE-SC0011918) and National Science Foundation (PLR-1303879, OPP-1724551) (M.D.S.).

Author information

Affiliations

  1. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

    • Felix Pithan
    •  & Dmitry Chechin
  2. Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

    • Gunilla Svensson
    • , Rodrigo Caballero
    • , Annica M. L. Ekman
    •  & Michael Tjernström
  3. A.M. Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences, Moscow, Russia

    • Dmitry Chechin
  4. Department of Earth, Atmospheric, and Planetary Science, MIT, Cambridge, MA, USA

    • Timothy W. Cronin
  5. Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany

    • Roel Neggers
  6. Cooperative Institute for Research in Environmental Science, University of Colorado and NOAA Earth System Research Laboratory Physical Science Division, Boulder, CO, USA

    • Matthew D. Shupe
    •  & Amy Solomon
  7. Institute for Meteorology, University of Leipzig, Leipzig, Germany

    • Manfred Wendisch

Authors

  1. Search for Felix Pithan in:

  2. Search for Gunilla Svensson in:

  3. Search for Rodrigo Caballero in:

  4. Search for Dmitry Chechin in:

  5. Search for Timothy W. Cronin in:

  6. Search for Annica M. L. Ekman in:

  7. Search for Roel Neggers in:

  8. Search for Matthew D. Shupe in:

  9. Search for Amy Solomon in:

  10. Search for Michael Tjernström in:

  11. Search for Manfred Wendisch in:

Contributions

All authors wrote the paper, which was coordinated by F.P. and G.S. T.W.C. and D.C. produced the figures.

Corresponding author

Correspondence to Felix Pithan.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41561-018-0234-1