Saturn’s moon Titan has a dense nitrogen-rich atmosphere, with methane as its primary volatile. Titan’s atmosphere experiences an active chemistry that produces a haze of organic aerosols that settle to the surface and a dynamic climate in which hydrocarbons are cycled between clouds, rain and seas. Titan displays particularly energetic meteorology at equinox in equatorial regions, including sporadic and large methane storms. In 2009 and 2010, near Titan’s northern spring equinox, the Cassini spacecraft observed three distinctive and short-lived spectral brightenings close to the equator. Here, we show from analyses of Cassini spectral data, radiative transfer modelling and atmospheric simulations that the brightenings originate in the atmosphere and are consistent with formation from dust storms composed of micrometre-sized solid organic particles mobilized from underlying dune fields. Although the Huygens lander found evidence that dust can be kicked up locally from Titan’s surface, our findings suggest that dust can be suspended in Titan’s atmosphere at much larger spatial scale. Mobilization of dust and injection into the atmosphere would require dry conditions and unusually strong near-surface winds (about five times more than estimated ambient winds). Such strong winds are expected to occur in downbursts during rare equinoctial methane storms—consistent with the timing of the observed brightenings. Our findings imply that Titan—like Earth and Mars—has an active dust cycle, which suggests that Titan’s dune fields are actively evolving by aeolian processes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

VIMS data are available via NASA’s Planetary Data System (PDS): http://pds-atmospheres.nmsu.edu/data_and_services/atmospheres_data/Cassini/vims.html. The data that support the analysis and plots within this paper and other findings of this study are available from the corresponding author upon request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Turtle, E. P. et al. Cassini imaging of Titan’s high-latitude lakes, clouds, and south-polar surface changes. Geophys. Res. Lett. 36, L2204 (2009).

  2. 2.

    Rodriguez, S. et al. Global circulation as the main source of cloud activity on Titan. Nature 459, 678–682 (2009).

  3. 3.

    Rodriguez, S. et al. Titan’s cloud seasonal activity from winter to spring with Cassini/VIMS. Icarus 216, 89–110 (2011).

  4. 4.

    Turtle, E. P. et al. Seasonal changes in Titan’s meteorology. Geophys. Res. Lett. 38, L03203 (2011).

  5. 5.

    Turtle, E. P. et al. Rapid and extensive surface changes near Titan’s equator: evidence of April showers. Science 331, 1414–1417 (2011).

  6. 6.

    Barnes, J. W. et al. Precipitation-induced surface brightenings seen on Titan by Cassini VIMS and ISS. Planet. Sci. 2, 1 (2013).

  7. 7.

    Rannou, P., Montmessin, F., Hourdin, F. & Lebonnois, S. The latitudinal distribution of clouds on Titan. Science 311, 201–205 (2006).

  8. 8.

    Mitchell, J. L. The drying of Titan’s dunes: Titan’s methane hydrology and its impact on atmospheric circulation. J. Geophys. Res. Planets 113, E08015 (2008).

  9. 9.

    Schneider, T., Graves, S. D. B., Schaller, E. L. & Brown, M. E. Polar methane accumulation and rainstorms on Titan from simulations of the methane cycle. Nature 481, 58–61 (2012).

  10. 10.

    Lora, J. M., Lunine, J. I. & Russell, J. L. GCM simulations of Titan’s middle and lower atmosphere and comparison to observations. Icarus 250, 516–528 (2015).

  11. 11.

    Mitchell, J. L. & Lora, J. M. The climate of Titan. Annu. Rev. Earth Planet. Sci. 44, 353–380 (2016).

  12. 12.

    Schaller, E. L., Roe, H. G., Schneider, T. & Brown, M. E. Storms in the tropics of Titan. Nature 460, 873–875 (2009).

  13. 13.

    Griffith, C. A. et al. Characterization of clouds in Titan’s tropical atmosphere. Astrophys. J. 702, L105–L109 (2009).

  14. 14.

    Lorenz, R. D. et al. The sand seas of Titan: Cassini RADAR observations of longitudinal dunes. Science 312, 724–727 (2006).

  15. 15.

    Rodriguez, S. et al. Global mapping and characterization of Titan’s dune fields with Cassini: correlation between RADAR and VIMS observations. Icarus 230, 168–179 (2014).

  16. 16.

    Brown, R. H. et al. The Cassini Visual and Infrared Mapping Spectrometer investigation. Space Sci. Rev. 115, 111–168 (2004).

  17. 17.

    Lorenz, R. D. Pillow lava on Titan: expectations and constraints on cryovolcanic processes. Planet. Space Sci. 44, 1021–1028 (1996).

  18. 18.

    Davies, A. G. et al. Atmospheric control of the cooling rate of impact melts and cryolavas on Titan’s surface. Icarus 208, 887–895 (2010).

  19. 19.

    Hirtzig, M. et al. Titan’s surface and atmosphere from Cassini/VIMS data with updated methane opacity. Icarus 226, 470–486 (2013).

  20. 20.

    Soderblom, L. A. et al. Correlations between Cassini VIMS spectra and RADAR SAR images: implications for Titan’s surface composition and the character of the Huygens probe landing site. Planet. Space Sci. 55, 2025–2036 (2007).

  21. 21.

    Barnes, J. W. et al. Spectroscopy, morphometry, and photoclinometry of Titan’s dunefields from Cassini/VIMS. Icarus 195, 400–414 (2008).

  22. 22.

    Clark, R. N. et al. Detection and mapping of hydrocarbon deposits on Titan. J. Geophys. Res. Planets 115, E10005 (2010).

  23. 23.

    Le Gall, A. et al. Cassini SAR, radiometry, scatterometry and altimetry observations of Titan’s dune fields. Icarus 213, 608–624 (2011).

  24. 24.

    Bonnefoy, L. E. et al. Compositional and spatial variations in Titan dune and interdune regions from Cassini VIMS and RADAR. Icarus 270, 222–237 (2016).

  25. 25.

    Tomasko, M. G. et al. A model of Titan’s aerosols based on measurements made inside the atmosphere. Planet. Space Sci. 56, 669–707 (2008).

  26. 26.

    Barth, E. L. & Rafkin, S. C. R. TRAMS: a new dynamic cloud model for Titan’s methane clouds. Geophys. Res. Lett. 34, L03203 (2007).

  27. 27.

    Barth, E. L. & Rafkin, S. C. R. Convective cloud heights as a diagnostic for methane environment on Titan. Icarus 206, 467–484 (2010).

  28. 28.

    Atkinson, K. R. et al. Penetrometry of granular and moist planetary surface materials: application to the Huygens landing site on Titan. Icarus 210, 843–851 (2010).

  29. 29.

    Schroeder, S. E., Karkoschka, E. & Lorenz, R. D. Bouncing on Titan: motion of the Huygens probe in the seconds after landing. Planet. Space Sci. 73, 327–340 (2012).

  30. 30.

    Lorenz, R. D. Wake-induced dust cloud formation following impact of planetary landers. Icarus 101, 165–167 (1993).

  31. 31.

    Greeley, R. & Iversen, J. D. Wind as a Geological Process on Earth, Mars, Venus, and Titan (Cambridge Univ. Press, Cambridge, 1985).

  32. 32.

    Shao, Y. P. & Lu, H. A simple expression for wind erosion threshold friction velocity. J. Geophys. Res. Atmos. 105, 22437–22443 (2000).

  33. 33.

    Claudin, P. & Andreotti, B. A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples. Earth Planet. Sci. Lett. 252, 30–44 (2006).

  34. 34.

    Kok, J. F., Parteli, E. J. R., Michaels, T. I. & Karam, D. B. The physics of wind-blown sand and dust. Rep. Prog. Phys. 75, 106901 (2012).

  35. 35.

    Barnes, J. W. et al. Production and global transport of Titan’s sand particles. Planet. Sci. 4, 1 (2015).

  36. 36.

    Sullivan, R. et al. Wind-driven particle mobility on Mars: insights from Mars Exploration Rover observations at ‘El Dorado’ and surroundings at Gusev Crater. J. Geophys. Res. Planets 113, E06S07 (2008).

  37. 37.

    Tokano, T. Relevance of fast westerlies at equinox for eastward elongation of Titan’s dunes. Aeolian Res. 2, 113–127 (2010).

  38. 38.

    Charnay, B. et al. Methane storms as a driver of Titan’s dune orientation. Nature Geosci. 8, 362–366 (2015).

  39. 39.

    Rafkin, S. C. R. & Barth, E. L. Environmental control of deep convective clouds on Titan: the combined effect of CAPE and wind shear on storm dynamics, morphology, and lifetime. J. Geophys. Res. Planets 120, 739–759 (2015).

  40. 40.

    Burr, D. M. et al. Higher-than-predicted saltation threshold wind speeds on Titan. Nature 517, 60–63 (2015).

Download references


We thank P. Claudin and B. Andreotti for discussions, especially regarding thresholds and modes of sediment transport. We are also grateful to the Cassini/VIMS team for the calibration and planning of the data. We acknowledge financial support from the UnivEarthS LabEx programme of Sorbonne Paris Cité (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02), the French National Research Agency (ANR-APOSTIC-11-BS56-002 and ANR-12-BS05-001-03/EXO-DUNES) and the CNES. This study was partly supported by the Institut Universitaire de France. T.C. was funded by the ESA Research Fellowship Programme in Space Sciences. Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.

Author information

Author notes

    • M. Hirtzig

    Present address: Fondation ‘La main à la pâte’, Montrouge, France

    • L. Maltagliati

    Present address: Springer Nature, London, UK


  1. Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot, UMR 7154 CNRS, Paris, France

    • S. Rodriguez
    • , C. Narteau
    • , A. Lucas
    •  & L. Maltagliati
  2. Laboratoire de Planétologie et Géodynamique (LPGNantes), CNRS-UMR 6112, Université de Nantes, Nantes, France

    • S. Le Mouélic
    •  & O. Bourgeois
  3. University of Idaho, Department of Physics, Moscow, ID, USA

    • J. W. Barnes
    • , J. Bow
    •  & G. Vixie
  4. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA

    • J. F. Kok
  5. Planetary Atmospheres and Surfaces, Department of Space Studies, Southwest Research Institute, Boulder, CO, USA

    • S. C. R. Rafkin
  6. Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA

    • R. D. Lorenz
  7. LESIA, Observatoire de Paris, PSL-Research Univ., CNRS, Univ. Pierre et Marie Curie Paris 06, Sorbonne Univ., Univ. Paris-Diderot, Sorbonne Paris-Cité, Meudon, France

    • B. Charnay
    • , A. Coustenis
    •  & M. Hirtzig
  8. Department of Geological Sciences, Brigham Young University, Provo, UT, USA

    • J. Radebaugh
  9. European Space Agency (ESA), European Space Astronomy Centre (ESAC), Villanueva de la Canada, Spain

    • T. Cornet
  10. Groupe de Spectroscopie Moléculaire et Atmosphérique, UMR CNRS 6089, Université de Reims, U.F.R. Sciences Exactes et Naturelles, Reims, France

    • P. Rannou
  11. Department of Planetary Sciences, University of Arizona, Lunar and Planetary Laboratory, Tucson, AZ, USA

    • C. A. Griffith
    •  & R. H. Brown
  12. Institut de Planétologie et d’Astrophysique de Grenoble, Université J. Fourier, CNRS/INSU, Grenoble, France

    • T. Appéré
  13. California Institute of Technology/Jet Propulsion Laboratory, Pasadena, CA, USA

    • C. Sotin
    •  & B. J. Buratti
  14. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

    • J. M. Soderblom
  15. Laboratoire Matière et Systèmes Complexes, Université Paris Diderot, Paris, France

    • S. Courrech du Pont
  16. German Aerospace Centre (DLR), Institute of Planetary Research, Berlin, Germany

    • R. Jaumann
    •  & K. Stephan
  17. Space Science and Engineering Center, University of Wisconsin, Madison, WI, USA

    • K. H. Baines
  18. Planetary Science Institute, Tucson, AZ, USA

    • R. N. Clark
  19. Department of Astronomy, Cornell University, Ithaca, NY, USA

    • P. D. Nicholson


  1. Search for S. Rodriguez in:

  2. Search for S. Le Mouélic in:

  3. Search for J. W. Barnes in:

  4. Search for J. F. Kok in:

  5. Search for S. C. R. Rafkin in:

  6. Search for R. D. Lorenz in:

  7. Search for B. Charnay in:

  8. Search for J. Radebaugh in:

  9. Search for C. Narteau in:

  10. Search for T. Cornet in:

  11. Search for O. Bourgeois in:

  12. Search for A. Lucas in:

  13. Search for P. Rannou in:

  14. Search for C. A. Griffith in:

  15. Search for A. Coustenis in:

  16. Search for T. Appéré in:

  17. Search for M. Hirtzig in:

  18. Search for C. Sotin in:

  19. Search for J. M. Soderblom in:

  20. Search for R. H. Brown in:

  21. Search for J. Bow in:

  22. Search for G. Vixie in:

  23. Search for L. Maltagliati in:

  24. Search for S. Courrech du Pont in:

  25. Search for R. Jaumann in:

  26. Search for K. Stephan in:

  27. Search for K. H. Baines in:

  28. Search for B. J. Buratti in:

  29. Search for R. N. Clark in:

  30. Search for P. D. Nicholson in:


S.R., S.L.M., J.W.B., J.B. and G.V. discovered the brightening spots in the VIMS dataset and proposed the dust storm hypothesis. S.R., T.A., M.H., L.M., P.R., C.A.G. and A.C. developed, adapted and ran the radiative transfer model and designed the inversion scheme, including a low atmospheric layer of suspended particles. B.C., J.F.K., R.D.L., J.R., C.N. and S.C.P. helped with the wind and sediment transport calculations. J.F.K., C.N., T.C., O.B. and A.L. participated in the discussion of the geological implications of dust storm occurrence in Titan’s atmosphere. C.S., R.H.B., K.H.B., B.J.B., R.N.C. and P.D.N. designed the planning of VIMS observations. S.R. drafted the manuscript with contributions from all authors.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to S. Rodriguez.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–8, Supplementary Tables 1–6 and Supplementary Methods.

About this article

Publication history




Issue Date