Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Slab stagnation due to a reduced viscosity layer beneath the mantle transition zone

Abstract

The linear structures of seismically fast anomalies, often interpreted as subducted slabs, in the southern Asia and circum-Pacific lower mantle provided strong evidence for the whole mantle convection model. However, recent seismic studies have consistently shown that subducted slabs are deflected horizontally for large distances in mantle transition zone in the western Pacific and other subduction zones, suggesting that the slabs meet significant resistance to their descending motion and become stagnant in the transition zone. This poses challenges to the whole mantle convection model and also brings the origin of stagnant slabs into question. Here, using a global mantle convection model with realistic spine–post-spinel phase change (−2 MPa K−1 Clapeyron slope) and plate motion history, we demonstrate that the observed stagnant slabs in the transition zone and other slab structures in the lower mantle can be explained by the presence of a thin, weak layer at the phase change boundary that was suggested by mineral physics and geoid modelling studies. Our study also shows that the stagnant slabs mostly result from subduction in the past 20–30 million years, confirming the transient nature of slab stagnation and phase change dynamics on timescales of tens of millions of years from previous studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map view of seismic anomalies and present-day model temperature anomalies.
Fig. 2: Cross-sectional view of seismic anomalies and present-day model temperature anomalies for subduction zones.
Fig. 3: Trench migration and age of subducting lithosphere at different subduction zones.
Fig. 4: Cross-sectional view of the structure and flow velocity evolution for the northern Honshu and North America slabs from Case 4.

Similar content being viewed by others

Data availability

All of the materials of this study are available on request from the corresponding authors. The S-wave tomography model S40RTS of ref. 9 is available at http://jritsema.earth.lsa.umich.edu//Research.html. The S-wave tomography model SEMUCB_WM1 of ref. 10 is available at http://seismo.berkeley.edu/wiki_br/Main_Page. The P-wave tomography model GAP_P4 of ref. 12 is available at www.godac.jamstec.go.jp/catalog/data_catalog/metadataDisp/GAP_P4?lang=en. The temperature anomalies for Case 4 at present day and the related data are available at https://doi.org/10.6084/m9.figshare.6916256.v1.

References

  1. Dziewonski, A. M. Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res. Solid Earth 89, 5929–5952 (1984).

    Article  Google Scholar 

  2. Grand, S. P., van der Hilst, R. D. & Widiyantoro, S. Global tomography: a snapshot of convection in the Earth. GSA Today 7, 1–7 (1997).

    Google Scholar 

  3. van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997).

    Article  Google Scholar 

  4. Ricard, Y., Richards, M. A., Lithgow-Bertelloni, C. & Le Stunff, Y. A geodynamic model of mantle density heterogeneity. J. Geophys. Res. 98, 21895–21909 (1993).

    Article  Google Scholar 

  5. Lithgow-Bertelloni, C. & Richards, M. A. The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophys. 36, 27–78 (1998).

    Article  Google Scholar 

  6. Bunge, H. P. et al. Time scales and heterogeneous structure in geodynamic Earth models. Science 280, 91–95 (1998).

    Article  Google Scholar 

  7. Hager, B. H. & Richards, M. A. Long-wavelength variations in Earth’s geoid: physical models and dynamical implications. Phil. Trans. R. Soc. Lond. A 328, 309–327 (1989).

    Article  Google Scholar 

  8. Mitrovica, J. X. & Forte, A. M. A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth. Planet. Sci. Lett. 225, 177–189 (2004).

    Article  Google Scholar 

  9. Ritsema, J., Deuss, A., Van Heijst, H. J. & Woodhouse, J. H. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).

    Article  Google Scholar 

  10. French, S. W. & Romanowicz, B. A. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

    Article  Google Scholar 

  11. Fukao, Y., Obayashi, M. Nakakuki, T. & Deep Slab Project Group. Stagnant slab: a review. Annu. Rev. Earth. Planet. Sci. 37, 19–46 (2009).

    Article  Google Scholar 

  12. Fukao, Y. & Obayashi, M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. Solid Earth 118, 5920–5938 (2013).

    Article  Google Scholar 

  13. Zhao, D., Tian, Y., Lei, J., Liu, L. & Zheng, S. Seismic image and origin of the Changbai intraplate volcano in East Asia: role of big mantle wedge above the stagnant Pacific slab. Phys. Earth Planet. Inter. 173, 197–206 (2009).

    Article  Google Scholar 

  14. Zou, H., Fan, Q. & Yao, Y. U–Th systematics of dispersed young volcanoes in NE China: asthenosphere upwelling caused by piling up and upward thickening of stagnant Pacific slab. Chem. Geol. 255, 134–142 (2008).

    Article  Google Scholar 

  15. Goes, S., Agrusta, R., Van Hunen, J. & Garel, F. Subduction-transition zone interaction: A review. Geosphere 13, 644–664 (2017).

    Article  Google Scholar 

  16. Zhong, S. J. & Gurnis, M. Mantle convection with plates and mobile, faulted plate margins. Science 267, 838–843 (1995).

    Article  Google Scholar 

  17. Christensen, U. R. The influence of trench migration on slab penetration into the lower mantle. Earth. Planet. Sci. Lett. 140, 27–39 (1996).

    Article  Google Scholar 

  18. Agrusta, R., Goes, S. & van Hunen, J. Subducting-slab transition-zone interaction: Stagnation, penetration and mode switches. Earth. Planet. Sci. Lett. 464, 10–23 (2017).

    Article  Google Scholar 

  19. Christensen, U. R. & Yuen, D. A. Layered convection induced by phase transitions. J. Geophys. Res. Solid Earth 90, 10291–10300 (1985).

    Article  Google Scholar 

  20. Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A. & Schubert, G. Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth’s mantle. Nature 361, 699–704 (1993).

    Article  Google Scholar 

  21. Ita, J. & King, S. D. The influence of thermodynamic formulation on simulations of subduction zone geometry and history. Geophys. Res. Lett. 25, 1463–1466 (1998).

    Article  Google Scholar 

  22. van der Hilst, R. & Seno, T. Effects of relative plate motion on the deep structure and penetration depth of slabs below the Izu-Bonin and Mariana island arcs. Earth. Planet. Sci. Lett. 120, 395–407 (1993).

    Article  Google Scholar 

  23. Yang, T. et al. Cenozoic lithospheric deformation in Northeast Asia and the rapidly-aging Pacific Plate. Earth. Planet. Sci. Lett. 492, 1–11 (2018).

    Article  Google Scholar 

  24. Gurnis, M. & Hager, B. H. Controls of the structure of subducted slabs. Nature 335, 317–321 (1988).

    Article  Google Scholar 

  25. Garel, F. et al. Interaction of subducted slabs with the mantle transition-zone: a regime diagram from 2-D thermos-mechanical models with a mobile trench and an overriding plate. Geochem. Geophys. Geosyst. 15, 1739–1765 (2014).

    Article  Google Scholar 

  26. Zhong, S. J. & Gurnis, M. Role of plates and temperature‐dependent viscosity in phase change dynamics. J. Geophys. Res. Solid Earth 99, 15903–15917 (1994).

    Article  Google Scholar 

  27. Čı́žková, H., van Hunen, J., van den Berg, A. P. & Vlaar, N. J. The influence of rheological weakening and yield stress on the interaction of slabs with the 670 km discontinuity. Earth. Planet. Sci. Lett. 199, 447–457 (2002).

    Article  Google Scholar 

  28. Billen, M. I. & Hirth, G. Rheologic controls on slab dynamics. Geochem. Geophys. Geosyst. 8, Q08012 (2007).

    Article  Google Scholar 

  29. King, S. D., Frost, D. J. & Rubie, D. C. Why cold slabs stagnate in the transition zone. Geology 43, 231–234 (2015).

    Article  Google Scholar 

  30. Katsura, T. et al. Post-spinel transition in Mg2SiO4 determined by high P–T in situ X-ray diffractometry. Phys. Earth Planet. Inter. 136, 11–24 (2003).

    Article  Google Scholar 

  31. Fei, Y. et al. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J. Geophys. Res. Solid Earth 109, B02305 (2004).

    Article  Google Scholar 

  32. Litasov, K. D., Ohtani, E., Sano, A., Suzuki, A. & Funakoshi, K. Wet subduction versus cold subduction. Geophys. Res. Lett. 32, L13312 (2005).

    Article  Google Scholar 

  33. Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).

    Article  Google Scholar 

  34. Leng, W. & Zhong, S. J. Controls on plume heat flux and plume excess temperature. J. Geophys. Res. Solid Earth 113, B04408 (2008).

    Article  Google Scholar 

  35. Turcotte, D. L. & Schubert, G. (eds) Geodynamics 3rd edn 192–193 (Cambridge Univ. Press, Cambridge, 2014).

  36. Müller, R. D., Dutkiewicz, A., Seton, M. & Gaina, C. Seawater chemistry driven by supercontinent assembly, breakup, and dispersal. Geology 41, 907–910 (2013).

    Article  Google Scholar 

  37. Zhong, S. J. & Rudolph, M. L. On the temporal evolution of long-wavelength mantle structure of the Earth mantle since the Early Paleozoic. Geochem. Geophys. Geosyst. 16, 1599–1615 (2015).

    Article  Google Scholar 

  38. Hassan, R., Müller, R. D., Gurnis, M., Williams, S. E. & Flament, N. A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow. Nature 533, 239–242 (2016).

    Article  Google Scholar 

  39. Karato, S. I. Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth (Cambridge Univ. Press, Cambridge, 2008).

  40. Panasyuk, S. V. & Hager, B. H. A model of transformational superplasticity in the upper mantle. Geophys. J. Int. 133, 741–755 (1998).

    Article  Google Scholar 

  41. Čížková, H. & Bina, C. R. Effects of mantle and subduction-interface rheologies on slab stagnation and trench rollback. Earth. Planet. Sci. Lett. 379, 95–103 (2013).

    Article  Google Scholar 

  42. Nakakuki, T., Tagawa, M. & Iwase, Y. Dynamical mechanisms controlling formation and avalanche of a stagnant slab. Phys. Earth Planet. Inter. 183, 309–320 (2010).

    Article  Google Scholar 

  43. Bercovici, D. The generation of plate tectonics frommantle convection. Earth. Planet. Sci. Lett. 205, 107–121 (2003).

    Article  Google Scholar 

  44. Zhong, S. J. & Watts, A. B. Lithospheric deformation induced by loading of the Hawaiian Islands and its implications for mantle rheology. J. Geophys. Res. 118, 6025–6048 (2013).

    Article  Google Scholar 

  45. Kohlstedt, D. L. & Mackwell, S. J. in Planetary Tectonics (eds Waters, T. & Schultz, R.) 395–455 (Cambridge Univ. Press, New York, 2009).

  46. Bunge, H. P. & Grand, S. P. Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon slab. Nature 405, 337–340 (2000).

    Article  Google Scholar 

  47. Liu, L., Spasojević, S. & Gurnis, M. Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous. Science 322, 934–938 (2008).

    Article  Google Scholar 

  48. Jolivet, L., Tamaki, K. & Fournier, M. Japan Sea, opening history and mechanism: a synthesis. J. Geophys. Res. 99, 22237–22259 (1994).

    Article  Google Scholar 

  49. Lee, C. & King, S. D. Dynamic buckling of subducting slabs reconciles geological and geophysical observations. Earth. Planet. Sci. Lett. 312, 360–370 (2011).

    Article  Google Scholar 

  50. Zhong, S. J., McNamara, A., Tan, E., Moresi, L. & Gurnis, M. A benchmark study on mantle convection in a 3‐D spherical shell using CitcomS. Geochem. Geophys. Geosyst. 9, Q10017 (2008).

    Article  Google Scholar 

  51. King, S. D. Radial models of mantle viscosity: results from a genetic algorithm. Geophys. J. Int. 122, 725–734 (1995).

    Article  Google Scholar 

  52. Rudolph, M. L., Lekić, V. & Lithgow-Bertelloni, C. Viscosity jump in Earth’s mid-mantle. Science 350, 1349–1352 (2015).

    Article  Google Scholar 

  53. Zhong, S. J., Zuber, M. T., Moresi, L. & Gurnis, M. Role of temperature‐dependent viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res. Solid Earth 105, 11063–11082 (2000).

    Article  Google Scholar 

  54. Li, M. et al. Quantifying melt production and degassing rate at mid-ocean ridges from global mantle convection models with plate motion history. Geochem. Geophys. Geosyst. 17, 2884–2904 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Goes and S. King for helpful comments on the manuscript. The work is supported by National Science Foundation through grant numbers 1135382, 1645245 and 1450181.

Author information

Authors and Affiliations

Authors

Contributions

W.M. and S.J.Z. developed the concept of the project, designed models, developed the analysis methods and wrote the paper. W.M. performed the calculations.

Corresponding authors

Correspondence to Wei Mao or Shijie Zhong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Figures 1–11, Supplementary Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, W., Zhong, S. Slab stagnation due to a reduced viscosity layer beneath the mantle transition zone. Nature Geosci 11, 876–881 (2018). https://doi.org/10.1038/s41561-018-0225-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0225-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing