The fate of the vast stocks of organic carbon stored in permafrost of the Western Siberian Lowland, the world’s largest peatland, is uncertain. Specifically, the amount of greenhouse gas emissions from rivers in the region is unknown. Here we present estimates of annual CO2 emissions from 58 rivers across all permafrost zones of the Western Siberian Lowland, between 56 and 67° N. We find that emissions peak at the permafrost boundary, and decrease where permafrost is more prevalent and in colder climatic conditions. River CO2 emissions were high, and on average two times greater than downstream carbon export. We suggest that high emissions and emission/export ratios are a result of warm temperatures and the long transit times of river water. We show that rivers in the Western Siberian Lowland play an important role in the carbon cycle by degassing terrestrial carbon before its transport to the Arctic Ocean, and suggest that changes in both temperature and precipitation are important for understanding and predicting high-latitude river CO2 emissions in a changing climate.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, GB2023 (2009).

  2. 2.

    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

  3. 3.

    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

  4. 4.

    Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).

  5. 5.

    Smith, L. C. Siberian peatlands a net carbon sink and global methane source since the Early Holocene. Science 303, 353–356 (2004).

  6. 6.

    Vonk, J. E. et al. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12, 7129–7167 (2015).

  7. 7.

    Dorrepaal, E. et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460, 616–619 (2009).

  8. 8.

    Vonk, J. E. & Gustafsson, Ö. Permafrost-carbon complexities. Nat. Geosci. 6, 675–676 (2013).

  9. 9.

    Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 172–185 (2007).

  10. 10.

    Cooper, L. W.et al. Flow-weighted values of runoff tracers (δ18O, DOC, Ba, alkalinity) from the six largest Arctic rivers. Geophys. Res. Lett. 35, L18606 (2008).

  11. 11.

    Striegl, R. G., Aiken, G. R., Dornblaser, M. M., Raymond, P. A. & Wickland, K. P. A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys. Res. Lett. 32, L21413 (2005).

  12. 12.

    Striegl, R. G., Dornblaser, M. M., McDonald, C. P., Rover, J. R. & Stets, E. G. Carbon dioxide and methane emissions from the Yukon River system. Glob. Biogeochem. Cycles 26, GB0E05 (2012).

  13. 13.

    Denfeld, B. A., Frey, K. E., Sobczak, W. V., Mann, P. J. & Holmes, R. M. Summer CO2 evasion from streams and rivers in the Kolyma River basin, north-east Siberia. Polar Res. 32, 1–15 (2013).

  14. 14.

    Lundin, E. J., Giesler, R., Persson, A., Thompson, M. S. & Karlsson, J. Integrating carbon emissions from lakes and streams in a subarctic catchment. J. Geophys. Res. Biogeosci. 118, 1200–1207 (2013).

  15. 15.

    Abbott, B. W., Larouche, J. R., Jones, J. B., Bowden, W. B. & Balser, A. W. Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost. J. Geophys. Res. Biogeosci. 119, 2049–2063 (2014).

  16. 16.

    Vonk, J. E. et al. High biolability of ancient permafrost carbon upon thaw. Geophys. Res. Lett. 40, 2689–2693 (2013).

  17. 17.

    Dubois, K. D., Lee, D. & Veizer, J. Isotopic constraints on alkalinity, dissolved organic carbon, and atmospheric carbon dioxide fluxes in the Mississippi River. J. Geophys. Res. 115, G02018 (2010).

  18. 18.

    Knoblauch, C., Beer, C., Sosnin, A., Wagner, D. & Pfeiffer, E. M. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Glob. Change Biol. 19, 1160–1172 (2013).

  19. 19.

    Sheng, Y. et al. A high-resolution GIS-based inventory of the west Siberian peat carbon pool. Glob. Biogeochem. Cycles 18, GB3004 (2004).

  20. 20.

    Frey, K. E., Siegel, D. I. & Smith, L. C. Geochemistry of west Siberian streams and their potential response to permafrost degradation. Water Resour. Res. 43, W03406 (2007).

  21. 21.

    Frappart, F. et al. Interannual variations of the terrestrial water storage in the Lower Ob’ Basin from a multisatellite approach. Hydrol. Earth Syst. Sci. 14, 2443–2453 (2010).

  22. 22.

    Romanovsky, V. E. et al. Thermal state of permafrost in Russia. Permafr. Periglac. Process. 21, 136–155 (2010).

  23. 23.

    Alin, S. R. et al. Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J. Geophys. Res. 116, G01009 (2011).

  24. 24.

    Frey, K. E. Amplified carbon release from vast West Siberian peatlands by 2100. Geophys. Res. Lett. 32, L09401 (2005).

  25. 25.

    Frey, K. E. & McClelland, J. W. Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol. Process. 23, 169–182 (2009).

  26. 26.

    Frey, K. E., McClelland, J. W., Holmes, R. M. & Smith, L. C. Impacts of climate warming and permafrost thaw on the riverine transport of nitrogen and phosphorus to the Kara Sea. J. Geophys. Res. 112, G04S58 (2007).

  27. 27.

    Hugelius, G. et al. The northern circumpolar soil carbon database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5, 3–13 (2013).

  28. 28.

    Algesten, G. et al. Role of lakes for organic carbon cycling in the boreal zone. Glob. Change Biol. 10, 141–147 (2004).

  29. 29.

    Ala-aho, P. et al. Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape. J. Hydrol. 556, 279–293 (2017).

  30. 30.

    Kawahigashi, M., Kaiser, K., Kalbitz, K., Rodionov, A. & Guggenberger, G. Dissolved organic matter in small streams along a gradient from discontinuous to continuous permafrost. Glob. Chang. Biol. 10, 1576–1586 (2004).

  31. 31.

    Pokrovsky, O. S. et al. Permafrost coverage, watershed area and season control of dissolved carbon and major elements in western Siberian rivers. Biogeosciences 12, 6301–6320 (2015).

  32. 32.

    Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

  33. 33.

    Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P. & Regnier, P. A. G. Spatial patterns in CO 2 evasion from the global river network. Global Biogeochem. Cycles 29, 534–554 (2015).

  34. 34.

    Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. & Hess, L. L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416, 617–620 (2002).

  35. 35.

    Zakharova, E., Kouraev, A. V., Rémy, F., Zemtsov, V. & Kirpotin, S. N. Seasonal variability of the Western Siberia wetlands from satellite radar altimetry. J. Hydrol. 512, 366–378 (2014).

  36. 36.

    Smith, L. C. et al. Influence of permafrost on water storage in West Siberian peatlands revealed from a new database of soil properties. Permafr. Periglac. Process. 23, 69–79 (2012).

  37. 37.

    Brown, J., Ferrians, O. J. J., Heginbottom, J. A. & Melnikov, E. S. Circum-Arctic Map of Permafrost and Ground Ice Conditions (National Snow and Ice Data Center, World Data Center for Glaciology, 2001).

  38. 38.

    Zakharova, E. A. A. et al. The modern hydrological regime of the northern part of Western Siberia from in situ and satellite observations. Int. J. Environ. Stud. 66, 447–463 (2009).

  39. 39.

    Karlsson, J. M., Lyon, S. W. & Destouni, G. Thermokarst lake, hydrological flow and water balance indicators of permafrost change in Western Siberia. J. Hydrol. 464–465, 459–466 (2012).

  40. 40.

    Raudina, T. V. et al. Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia. Biogeosciences 14, 3561–3584 (2017).

  41. 41.

    Yamamoto, S., Alcauskas, J. B. & Crozier, T. E. Solubility of methane in distilled water and seawater. J. Chem. Eng. Data 21, 78–80 (1976).

  42. 42.

    Cuthbert, I. D. & del Giorgio, P. Toward a standard method of measuring color in freshwater. Limnol. Oceanogr. 37, 1319–1326 (1992).

  43. 43.

    Johnson, M. S. et al. Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems-method and applications. Ecohydrology 3, 68–78 (2009).

  44. 44.

    Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97, 7373–7382 (1992).

  45. 45.

    Vachon, D., Prairie, Y. T. & Cole, J. J. The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnol. Oceanogr. 55, 1723–1732 (2010).

  46. 46.

    Jähne, B., Heinz, G. & Dietrich, W. Measurement of the diffusion coefficients of sparingly soluble gases in water. J. Geophys. Res. Oceans 92, 10767–10776 (1987).

  47. 47.

    Nikitin, S. P. & Zemtsov, V. A. The Variability of Hydrological Parameters of Western Siberia (Nauka, Novosibirsk, 1986).

  48. 48.

    Novikov, S. M. et al. Hydrology of Bog Territories of the Permafrost Zone of Western Siberia (BBM, St. Petersburg, 2009).

  49. 49.

    Gordeev, V. V., Martin, J. M., Sidorov, I. S. & Sidorova, M. V. A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean. Am. J. Sci. 296, 664–691 (1996).

Download references


The study was part of the JPI Climate initiative, financially supported by VR (the Swedish Research Council) grant no. 325-2014-6898 to J.K. Additional funding from RNF (RSCF) grant no. 18-17-00237, RFBR grant no. 17-55-16008 and RF Federal Target Program RFMEFI58717X0036 ‘Kolmogorov’ to O.S.P. and S.N.K. as well as NERC grant no. NE/M019896/1 to C.S. is acknowledged. The authors thank A. Sorochinskiy and A. Lim for assistance in the field, as well as M. Myrstener, M. Klaus and S. Monteux for advice on data analysis. L. Kovaleva is acknowledged for artwork.

Author information


  1. Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden

    • S. Serikova
    •  & J. Karlsson
  2. GET UMR 5563 CNRS, Geoscience and Environment, University of Toulouse, Toulouse, France

    • O. S. Pokrovsky
    •  & L. S. Shirokova
  3. University of Aberdeen, Kings College, Aberdeen, Scotland

    • P. Ala-Aho
    • , C. Soulsby
    •  & D. Tetzlaff
  4. Water Resources and Environmental Engineering Research Unit, Faculty of Technology, University of Oulu, Oulu, Finland

    • P. Ala-Aho
  5. Organization of the Russian Academy of Sciences A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia

    • V. Kazantsev
  6. BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, Russia

    • S. N. Kirpotin
    • , I. V. Krickov
    •  & R. M. Manasypov
  7. Institute of Monitoring of Climatic and Ecological Systems SB RAS, Tomsk, Russia

    • S. G. Kopysov
  8. Department of Forest Ecology and Management, The Swedish University of Agricultural Sciences, Umeå, Sweden

    • H. Laudon
  9. N. Laverov Federal Center for Integrated Arctic Research, IEPS, RAS, Arkhangelsk, Russia

    • R. M. Manasypov
    •  & L. S. Shirokova
  10. IGB Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany

    • D. Tetzlaff
  11. Humboldt University Berlin, Berlin, Germany

    • D. Tetzlaff


  1. Search for S. Serikova in:

  2. Search for O. S. Pokrovsky in:

  3. Search for P. Ala-Aho in:

  4. Search for V. Kazantsev in:

  5. Search for S. N. Kirpotin in:

  6. Search for S. G. Kopysov in:

  7. Search for I. V. Krickov in:

  8. Search for H. Laudon in:

  9. Search for R. M. Manasypov in:

  10. Search for L. S. Shirokova in:

  11. Search for C. Soulsby in:

  12. Search for D. Tetzlaff in:

  13. Search for J. Karlsson in:


J.K. and O.S.P. contributed to study design. S.N.K. organized sampling campaigns and logistics. S.S., R.M.M., I.V.K. and V.K. contributed to sampling. L.S.S. analysed the DOC and DIC samples. S.G.K. complemented data with literature material. S.S. analysed data, and prepared figures and tables. S.S., J.K., O.S.P. and H.L. wrote the paper. C.S., D.T. and P.A. helped with interpreting the results. All authors commented on the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to S. Serikova or J. Karlsson.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–3, Supplementary Tables 1–5

  2. Supplementary Dataset

    Water chemistry parameters and watershed characteristics for each river sampled

About this article

Publication history