Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles

An Author Correction to this article was published on 02 July 2019

An Author Correction to this article was published on 12 October 2018

This article has been updated


Magmatic volatile release to the atmosphere can lead to climatic changes and substantial environmental degradation including the production of acid rain, ocean acidification and ozone depletion, potentially resulting in the collapse of the biosphere. The largest recorded mass extinction in Earth’s history occurred at the end of the Permian, coinciding with the emplacement of the Siberian large igneous province, suggesting that large-scale magmatism is a key driver of global environmental change. However, the source and nature of volatiles in the Siberian large igneous province remain contentious. Here we present halogen compositions of sub-continental lithospheric mantle xenoliths emplaced before and after the eruption of the Siberian flood basalts. We show that the Siberian lithosphere is massively enriched in halogens from the infiltration of subducted seawater-derived volatiles and that a considerable amount (up to 70%) of lithospheric halogens are assimilated into the plume and released to the atmosphere during emplacement. Plume–lithosphere interaction is therefore a key process controlling the volatile content of large igneous provinces and thus the extent of environmental crises, leading to mass extinctions during their emplacement.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Halogen and K abundances in Udachnaya and Obnazhennaya xenoliths.
Fig. 2: Halogen composition of the Siberian SCLM.
Fig. 3: Helium isotopes and halogen systematics.
Fig. 4: Schematic of plume–lithosphere interaction within the Siberian craton.

Change history

  • 02 July 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

  • 12 October 2018

    In the version of this Article originally published, refs 28–31 were listed in the wrong order, resulting in the citations in the main text being incorrect. The citations and reference list have now been updated in the online versions; the corrected order is shown below.


  1. 1.

    Burgess, S., Muirhead, J. & Bowring, S. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164 (2017).

    Article  Google Scholar 

  2. 2.

    Wignall, P. B. Large igneous provinces and mass extinctions. Earth Sci. Rev. 53, 1–33 (2001).

    Article  Google Scholar 

  3. 3.

    Erwin, D. H., Bowring, S. A. & Yugan, J. in Catastrophic Events and Mass Extinctions: Imapcts and Beyond GSA Spec. Paper 356 (eds Koeberl, C. & MacLeod, K. G.) 363–383 (Geological Society of America, 2002).

  4. 4.

    Beerling, D. J., Harfoot, M., Lomax, B. & Pyle, J. A. The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Phil. Trans. R. Soc. A 365, 1843–1866 (2007).

    Article  Google Scholar 

  5. 5.

    Svensen, H. et al. Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277, 490–500 (2009).

    Article  Google Scholar 

  6. 6.

    Grard, A., Francois, L., Dessert, C., Dupré, B. & Godderis, Y. Basaltic volcanism and mass extinction at the Permo-Triassic boundary: environmental impact and modeling of the global carbon cycle. Earth Planet. Sci. Lett. 234, 207–221 (2005).

    Article  Google Scholar 

  7. 7.

    Guex, J. et al. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction. Sci. Rep. 6, 23168 (2016).

  8. 8.

    Self, S., Widdowson, M., Thordarson, T. & Jay, A. E. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective. Earth Planet. Sci. Lett. 248, 518–532 (2006).

    Article  Google Scholar 

  9. 9.

    Sobolev, A., Sobolev, S., Kuzmin, D., Malitch, K. & Petrunin, A. Siberian meimechites: origin and relation to flood basalts and kimberlites. Russ. Geol. Geophys. 50, 999–1033 (2009).

    Article  Google Scholar 

  10. 10.

    Sobolev, S. V. et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–316 (2011).

    Article  Google Scholar 

  11. 11.

    Reichow, M. K. et al. 40Ar/39Ar dates from the West Siberian Basin: Siberian flood basalt province doubled. Science 296, 1846–1849 (2002).

    Article  Google Scholar 

  12. 12.

    Ivanov, A. V. et al. Siberian Traps large igneous province: evidence for two flood basalt pulses around the Permo-Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism. Earth Sci. Rev. 122, 58–76 (2013).

    Article  Google Scholar 

  13. 13.

    Pernet-Fisher, J. et al. Plume impingement on the Siberian SCLM: evidence from Re–Os isotope systematics. Lithos 218, 141–154 (2015).

    Article  Google Scholar 

  14. 14.

    Walker, R., Carlson, R., Shirey, S. & Boyd, F. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: implications for the chemical evolution of subcontinental mantle. Geochim. Cosmochim. Acta 53, 1583–1595 (1989).

    Article  Google Scholar 

  15. 15.

    McDonough, W. Constraints on the composition of the continental lithospheric mantle. Earth Planet. Sci. Lett. 101, 1–18 (1990).

    Article  Google Scholar 

  16. 16.

    Taylor, L. A., Milledge, H. J., Bulanova, G. P., Snyder, G. A. & Keller, R. A. Metasomatic eclogitic diamond growth: evidence from multiple diamond inclusions. Int. Geol. Rev. 40, 663–676 (1998).

    Article  Google Scholar 

  17. 17.

    Howarth, G. H. et al. Superplume metasomatism: evidence from Siberian mantle xenoliths. Lithos 184, 209–224 (2014).

    Article  Google Scholar 

  18. 18.

    Barry, P. H. et al. Helium isotopic evidence for modification of the cratonic lithosphere during the Permo-Triassic Siberian flood basalt event. Lithos 216, 73–80 (2015).

    Article  Google Scholar 

  19. 19.

    Griffin, W., Fisher, N., Friedman, J., O'Reilly, S. Y. & Ryan, C. Cr-pyrope garnets in the lithospheric mantle 2. Compositional populations and their distribution in time and space. Geochem. Geophys. Geosyst. 3, 1073 (2002)

    Google Scholar 

  20. 20.

    Kendrick, M. et al. Seawater cycled throughout Earth’s mantle in partially serpentinized lithosphere. Nat. Geosci. 10, 222–228 (2017).

    Article  Google Scholar 

  21. 21.

    Burgess, R., Layzelle, E., Turner, G. & Harris, J. Constraints on the age and halogen composition of mantle fluids in Siberian coated diamonds. Earth Planet. Sci. Lett. 197, 193–203 (2002).

    Article  Google Scholar 

  22. 22.

    Johnston, D. A. Volcanic contribution of chlorine to the stratosphere: more significant to ozone than previously estimated? Science 209, 491–493 (1980).

    Article  Google Scholar 

  23. 23.

    Daniel, J., Solomon, S., Portmann, R. & Garcia, R. Stratospheric ozone destruction: the importance of bromine relative to chlorine. J. Geophys. Res. Atmos. 104, 23871–23880 (1999).

    Article  Google Scholar 

  24. 24.

    Kendrick, M. A., Kamenetsky, V. S., Phillips, D. & Honda, M. Halogen systematics (Cl, Br, I) in mid-ocean ridge basalts: a Macquarie Island case study. Geochim. Cosmochim. Acta 81, 82–93 (2012).

    Article  Google Scholar 

  25. 25.

    Basu, A. R. et al. High-3He plume origin and temporal-spatial evolution of the Siberian flood basalts. Science 269, 822–825 (1995).

    Article  Google Scholar 

  26. 26.

    Kelley, S. & Wartho, J. Rapid kimberlite ascent and the significance of Ar-Ar ages in xenolith phlogopites. Science 289, 609–611 (2000).

    Article  Google Scholar 

  27. 27.

    Alexeev, S. et al. Isotopic composition (H, O, Cl, Sr) of ground brines of the Siberian Platform. Russ. Geol. Geophys. 48, 225–236 (2007).

    Article  Google Scholar 

  28. 28.

    Aiuppa, A. et al. Emission of bromine and iodine from Mount Etna volcano. Geochem. Geophys. Geosyst. 6, Q08008 (2005).

    Article  Google Scholar 

  29. 29.

    Ross, P.-S. et al. Mafic volcaniclastic deposits in flood basalt provinces: a review. J. Volcanol. Geotherm. Res. 145, 281–314 (2005).

    Article  Google Scholar 

  30. 30.

    Millard, G. A., Mather, T. A., Pyle, D. M., Rose, W. I. & Thornton, B. Halogen emissions from a small volcanic eruption: modeling the peak concentrations, dispersion, and volcanically induced ozone loss in the stratosphere. Geophys. Res. Lett. 33, L19815 (2006).

    Article  Google Scholar 

  31. 31.

    Black, B. A., Elkins-Tanton, L. T., Rowe, M. C. & Peate, I. U. Magnitude and consequences of volatile release from the Siberian Traps. Earth Planet. Sci. Lett. 317, 363–373 (2012).

    Article  Google Scholar 

  32. 32.

    Burgess, S. D. & Bowring, S. A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 1, e1500470 (2015).

    Article  Google Scholar 

  33. 33.

    Westrich, H. R. & Gerlach, T. M. Magmatic gas source for the stratospheric SO2 cloud from the June 15, 1991, eruption of Mount Pinatubo. Geology 20, 867–870 (1992).

    Article  Google Scholar 

  34. 34.

    Shaw, D. M. Trace Elements in Magmas: A Theoretical Treatment (Cambridge University Press, Cambridge, 2006).

  35. 35.

    Joachim, B. et al. Experimental partitioning of F and Cl between olivine, orthopyroxene and silicate melt at Earth’s mantle conditions. Chem. Geol. 416, 65–78 (2015).

    Article  Google Scholar 

  36. 36.

    Visscher, H. et al. Environmental mutagenesis during the end-Permian ecological crisis. Proc. Natl Acad. Sci. USA 101, 12952–12956 (2004).

    Article  Google Scholar 

  37. 37.

    Benca, J. P., Duijnstee, I. A. P. & Looy, C. V. UV-B–induced forest sterility: implications of ozone shield failure in Earth’s largest extinction. Sci. Adv. 4, e1700618 (2018).

  38. 38.

    Baresel, B. et al. Timing of global regression and microbial bloom linked with the Permian-Triassic boundary mass extinction: implications for driving mechanisms. Sci. Rep. 7, 43630 (2017).

    Article  Google Scholar 

  39. 39.

    Chavrit, D. et al. The contribution of hydrothermally altered ocean crust to the mantle halogen and noble gas cycles. Geochim. Cosmochim. Acta 183, 106–124 (2016).

    Article  Google Scholar 

  40. 40.

    Jacob, D., Jagoutz, E., Lowry, D., Mattey, D. & Kudrjavtseva, G. Diamondiferous eclogites from Siberia: remnants of Archean oceanic crust. Geochim. Cosmochim. Acta 58, 5191–5207 (1994).

    Article  Google Scholar 

  41. 41.

    Eiler, J. M. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev. Mineral. Geochem. 43, 319–364 (2001).

    Article  Google Scholar 

  42. 42.

    Svensen, H., Jamtveit, B., Banks, D. A. & Austrheim, H. Halogen contents of eclogite facies fluid inclusions and minerals: Caledonides, western Norway. J. Metamorph. Geol. 19, 165–178 (2001).

    Article  Google Scholar 

  43. 43.

    Philippot, P., Agrinier, P. & Scambelluri, M. Chlorine cycling during subduction of altered oceanic crust. Earth Planet. Sci. Lett. 161, 33–44 (1998).

    Article  Google Scholar 

  44. 44.

    Callegaro, S. et al. Microanalyses link sulfur from large igneous provinces and Mesozoic mass extinctions. Geology 42, 895–898 (2014).

    Article  Google Scholar 

  45. 45.

    Foley, S. F. & Fischer, T. P. An essential role for continental rifts and lithosphere in the deep carbon cycle. Nat. Geosci. 10, 897–902 (2017).

    Article  Google Scholar 

  46. 46.

    Muramatsu, Y. et al. Halogen concentrations in pore waters and sediments of the Nankai Trough, Japan: implications for the origin of gas hydrates. Appl. Geochem. 22, 534–556 (2007).

    Article  Google Scholar 

  47. 47.

    Merrihue, C. & Turner, G. Potassium‐argon dating by activation with fast neutrons. J. Geophys. Res. 71, 2852–2857 (1966).

    Article  Google Scholar 

  48. 48.

    Böhlke, J. & Irwin, J. Laser microprobe analyses of Cl, Br, I, and K in fluid inclusions: implications for sources of salinity in some ancient hydrothermal fluids. Geochim. Cosmochim. Acta 56, 203–225 (1992).

    Article  Google Scholar 

  49. 49.

    Johnson, L., Burgess, R., Turner, G., Milledge, H. & Harris, J. Noble gas and halogen geochemistry of mantle fluids: comparison of African and Canadian diamonds. Geochim. Cosmochim. Acta 64, 717–732 (2000).

    Article  Google Scholar 

  50. 50.

    Kendrick, M. A. High precision Cl, Br and I determinations in mineral standards using the noble gas method. Chem. Geol. 292, 116–126 (2012).

    Article  Google Scholar 

  51. 51.

    Ruzié-Hamilton, L. et al. Determination of halogen abundances in terrestrial and extraterrestrial samples by the analysis of noble gases produced by neutron irradiation. Chem. Geol. 437, 77–87 (2016).

    Article  Google Scholar 

  52. 52.

    Broadley, M. W., Ballentine, C. J., Chavrit, D., Dallai, L. & Burgess, R. Sedimentary halogens and noble gases within Western Antarctic xenoliths: implications of extensive volatile recycling to the sub continental lithospheric mantle. Geochim. Cosmochim. Acta 176, 139–156 (2016).

    Article  Google Scholar 

  53. 53.

    Stuart, F. & Turner, G. The abundance and isotopic composition of the noble gases in ancient fluids. Chem. Geol. Isot. Geosci. Sect. 101, 97–109 (1992).

    Article  Google Scholar 

Download references


This work is dedicated to L.A.T, who passed away in 2017. L.A.T. devoted his life to science and teaching, serving as an excellent mentor to P.H.B. during his time at University of Tennessee. This work was financially supported though a NERC studentship NE/J500057/1 (to M.W.B.) and NERC (NE/M000427/1) and ERC (ERC-267692 NOBLE) grants to C.J.B. and R.B. P.H.B. was funded by an NSF fellowship (EAR-114455) to investigate the geochemical signatures in these samples.

Author information




M.W.B., P.H.B. and R.B. conceived the project and prepared the initial manuscript. L.A.T. provided the samples and M.W.B. and R.B. performed the analysis. All authors contributed to data interpretation and preparation of the final manuscript.

Corresponding author

Correspondence to Michael W. Broadley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary information on samples, geological background and calculations; Supplementary Figures 1–4; Supplementary Tables 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Broadley, M.W., Barry, P.H., Ballentine, C.J. et al. End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles. Nature Geosci 11, 682–687 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing