Article | Published:

A distinct metal fingerprint in arc volcanic emissions

Nature Geosciencevolume 11pages790794 (2018) | Download Citation

Abstract

As well as gases that regulate climate over geological time, volcanoes emit prodigious quantities of metals into the atmosphere, where they have key roles as catalysts, pollutants and nutrients. Here we compare measurements of arc basaltic volcano metal emissions with those from hotspot settings. As well as emitting higher fluxes of metals (similar to those building ore deposits), these arc emissions possess a distinct compositional fingerprint, particularly rich in tungsten, arsenic, thallium, antimony and lead when compared with those from hotspots. We propose that volcanic metal emissions are controlled by magmatic water content and redox: hydrous arc magmas that do not undergo sulfide saturation yield metal-rich, saline aqueous fluid; shallow degassing and resorption of late-stage sulfides feeds volcanic gases in Hawai’i and Iceland. Although global arc magma chemistries vary considerably, our findings suggest that volcanic emissions in arcs have a distinct fingerprint when compared with other settings. A shift in global volcanic metal emissions may have occurred in Earth’s past as more oxidized, water-rich magmas became prevalent, influencing the surface environment.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Nealson, K. H., Belz, A. & McKee, B. Breathing metals as a way of life: geobiology in action. A. Van Leeuw. J. Microbiol. 81, 215–222 (2002).

  2. 2.

    Graedel, T., Weschler, C. & Mandich, M. Influence of transition metal complexes on atmospheric droplet acidity. Nature 317, 240–242 (1985).

  3. 3.

    Hedenquist, J. W. & Lowenstern, J. B. The role of magmas in the formation of hydrothermal ore deposits. Nature 370, 519–527 (1994).

  4. 4.

    Williams-Jones, A. E. & Heinrich, C. A. 100th anniversary special paper: vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ. Geol. 100, 1287–1312 (2005).

  5. 5.

    Stoiber, R. E. & Rose, W. I. Fumarole incrustations at active Central American volcanoes. Geochim. Cosmochim. Acta 38, 495–516 (1974).

  6. 6.

    Allard, P. et al. Acid gas and metal emission rates during long‐lived basalt degassing at Stromboli volcano. Geophys. Res. Lett. 27, 1207–1210 (2000).

  7. 7.

    Moune, S., Gauthier, P.-J. & Delmelle, P. Trace elements in the particulate phase of the plume of Masaya Volcano, Nicaragua. J. Volcanol. Geotherm. Res. 193, 232–244 (2010).

  8. 8.

    Gauthier, P.-J. & Le Cloarec, M.-F. Variability of alkali and heavy metal fluxes released by Mt. Etna volcano, Sicily, between 1991 and 1995. J. Volcanol. Geotherm. Res. 81, 311–326 (1998).

  9. 9.

    Gauthier, P. J., Sigmarsson, O., Gouhier, M., Haddadi, B. & Moune, S. Elevated gas flux and trace metal degassing from the 2014-2015 fissure eruption at the Bárðarbunga volcanic system, Iceland. J. Geophys. Res. Solid Earth 121, 1610–1630 (2016).

  10. 10.

    Mather, T. et al. Halogens and trace metal emissions from the ongoing 2008 summit eruption of Kīlauea volcano, Hawaii. Geochim. Cosmochim. Acta 83, 292–323 (2012).

  11. 11.

    Hinkley, T. K., Lamothe, P. J., Wilson, S. A., Finnegan, D. L. & Gerlach, T. M. Metal emissions from Kilauea, and a suggested revision of the estimated worldwide metal output by quiescent degassing of volcanoes. Earth Planet. Sci. Lett. 170, 315–325 (1999).

  12. 12.

    Aiuppa, A., Dongarrà, G., Valenza, M., Federico, C. & Pecoraino, G. in Volcanism and the Earth’s Atmosphere Vol. 139 (eds A. Robock & C. Oppenheimer) 41–54 (American Geophysical Union, Washington DC, 2003).

  13. 13.

    Hong, S., Candelone, J.-P., Soutif, M. & Boutron, C. F. A reconstruction of changes in copper production and copper emissions to the atmosphere during the past 7000 years. Sci. Total Environ. 188, 183–193 (1996).

  14. 14.

    Richards, J. P. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol. Rev. 40, 1–26 (2011).

  15. 15.

    Keith, M., Haase, K. M., Klemd, R., Schwarz-Schampera, U. & Franke, H. Systematic variations in magmatic sulphide chemistry from mid-ocean ridges, back-arc basins and island arcs. Chem. Geol. 451, 67–77 (2016).

  16. 16.

    Jenner, F. E., O’Neill, H. S. C., Arculus, R. J. & Mavrogenes, J. A. The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu. J. Petrol. 51, 2445–2464 (2010).

  17. 17.

    Patten, C., Barnes, S.-J., Mathez, E. A. & Jenner, F. E. Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets. Chem. Geol. 358, 170–188 (2013).

  18. 18.

    Hinkley, T. K., Le Cloarec, M.-F. & Lambert, G. Fractionation of families of major, minor, and trace metals across the melt–vapor interface in volcanic exhalations. Geochim. Cosmochim. Acta 58, 3255–3263 (1994).

  19. 19.

    Li, C. & Ripley, E. M. Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits. Miner. Deposita 40, 218–230 (2005).

  20. 20.

    Jenner, F. E. Cumulate causes for the low contents of sulfide-loving elements in the continental crust. Nat. Geosci. 10, 524 (2017).

  21. 21.

    Johnson, A. & Canil, D. The degassing behavior of Au, Tl, As, Pb, Re, Cd and Bi from silicate liquids: experiments and applications. Geochim. Cosmochim. Acta 75, 1773–1784 (2011).

  22. 22.

    Kiseeva, E. S. & Wood, B. J. A simple model for chalcophile element partitioning between sulphide and silicate liquids with geochemical applications. Earth Planet. Sci. Lett. 383, 68–81 (2013).

  23. 23.

    Heinrich, C., Günther, D., Audétat, A., Ulrich, T. & Frischknecht, R. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology 27, 755–758 (1999).

  24. 24.

    Botcharnikov, R. E. et al. Behavior of gold in a magma at sulfide–sulfate transition: revisited. Am. Mineral. 98, 1459–1464 (2013).

  25. 25.

    Guo, H. & Audétat, A. Transfer of volatiles and metals from mafic to felsic magmas in composite magma chambers: an experimental study. Geochim. Cosmochim. Acta 198, 360–378 (2017).

  26. 26.

    Zajacz, Z., Candela, P. A., Piccoli, P. M. & Sanchez-Valle, C. The partitioning of sulfur and chlorine between andesite melts and magmatic volatiles and the exchange coefficients of major cations. Geochim. Cosmochim. Acta 89, 81–101 (2012).

  27. 27.

    Zajacz, Z., Candela, P. A., Piccoli, P. M., Wälle, M. & Sanchez-Valle, C. Gold and copper in volatile saturated mafic to intermediate magmas: solubilities, partitioning, and implications for ore deposit formation. Geochim. Cosmochim. Acta 91, 140–159 (2012).

  28. 28.

    Keppler, H. & Wyllie, P. J. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite–H2O−HCl and haplogranite–H2O−HF. Contrib. Mineral. Petrol. 109, 139–150 (1991).

  29. 29.

    Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E. H. & Wallace, P. J. Why do mafic arc magmas contain ~4wt% water on average? Earth Planet. Sci. Lett. 364, 168–179 (2013).

  30. 30.

    Wallace, P. J. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 140, 217–240 (2005).

  31. 31.

    Dixon, J. E. & Clague, D. A. Volatiles in basaltic glasses from Loihi Seamount, Hawaii: evidence for a relatively dry plume component. J. Petrol. 42, 627–654 (2001).

  32. 32.

    Gerlach, T. M., McGee, K. A., Elias, T., Sutton, A. J. & Doukas, M. P. Carbon dioxide emission rate of Kilauea Volcano: implications for primary magma and the summit reservoir. J. Geophys. Res. Solid Earth 107, ECV 3-1–ECV 3-15 (2002).

  33. 33.

    Moore, G., Vennemann, T., & Carmichael, I. S. E. An empirical model for the solubility of H2O in magmas to 3 kilobars. Am. Mineral. 83, 36–42 (1998).

  34. 34.

    Gerlach, T. M. Exsolution of H2O, CO2, and S during eruptive episodes at Kīlauea Volcano, Hawaii. J. Geophys. Res. Solid Earth 91, 12177–12185 (1986).

  35. 35.

    van Hinsberg, V., Berlo, K., Migdisov, A. & Williams-Jones, A. CO2-fluxing collapses metal mobility in magmatic vapour. Geochem. Perspect. Lett. 2, 169–177 (2016).

  36. 36.

    Liu, Y., Samaha, N.-T. & Baker, D. R. Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts. Geochim. Cosmochim. Acta 71, 1783–1799 (2007).

  37. 37.

    Carroll, M. & Rutherford, M. Sulfide and sulfate saturation in hydrous silicate melts. J. Geophys. Res. Solid Earth 90, C601–C612 (1985).

  38. 38.

    Metrich, N. & Clocchiatti, R. Sulfur abundance and its speciation in oxidized alkaline melts. Geochim. Cosmochim. Acta 60, 4151–4160 (1996).

  39. 39.

    Jugo, P. J. Sulfur content at sulfide saturation in oxidized magmas. Geology 37, 415–418 (2009).

  40. 40.

    Allard, P. et al. Prodigious emission rates and magma degassing budget of major, trace and radioactive volatile species from Ambrym basaltic volcano, Vanuatu island Arc. J. Volcanol. Geotherm. Res. 322, 119–143 (2016).

  41. 41.

    Gíslason, S. et al. Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland. Geochem. Perspect. Lett. 1, 84–93 (2015).

  42. 42.

    Wallace, P. J. & Carmichael, I. S. E. Sulfur in basaltic magmas. Geochim. Cosmochim. Acta 56, 1863–1874 (1992).

  43. 43.

    Richards, J. P. High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: just add water. Econ. Geol. 106, 1075–1081 (2011).

  44. 44.

    Zajacz, Z., Halter, W. E., Pettke, T. & Guillong, M. Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: controls on element partitioning. Geochim. Cosmochim. Acta 72, 2169–2197 (2008).

  45. 45.

    Peach, C., Mathez, E. & Keays, R. Sulfide melt–silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: implications for partial melting. Geochim. Cosmochim. Acta 54, 3379–3389 (1990).

  46. 46.

    Mungall, J. E., Brenan, J. M., Godel, B., Barnes, S. & Gaillard, F. Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles. Nat. Geosci. 8, 216–219 (2015).

  47. 47.

    Le Vaillant, M., Barnes, S. J., Mungall, J. E. & Mungall, E. L. Role of degassing of the Noril'sk nickel deposits in the Permian-Triassic mass extinction event. Proc. Natl Acad. Sci. USA 114, 2485–2490 (2017).

  48. 48.

    Larocque, A. C., Stimac, J. A., Keith, J. D. & Huminicki, M. A. Evidence for open-system behavior in immiscible Fe–S–O liquids in silicate magmas: implications for contributions of metals and sulfur to ore-forming fluids. Can. Mineral. 38, 1233–1249 (2000).

  49. 49.

    Nadeau, O., Williams-Jones, A. E. & Stix, J. Sulphide magma as a source of metals in arc-related magmatic hydrothermal ore fluids. Nat. Geosci. 3, 501–505 (2010).

  50. 50.

    Schmidt, M. E. & Grunder, A. L. Deep mafic roots to arc volcanoes: mafic recharge and differentiation of basaltic andesite at North Sister Volcano, Oregon Cascades. J. Petrol. 52, 603–641 (2011).

  51. 51.

    Parmigiani, A., Faroughi, S., Huber, C., Bachmann, O. & Su, Y. Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust. Nature 532, 492–495 (2016).

  52. 52.

    Hattori, K. H. & Keith, J. D. Contribution of mafic melt to porphyry copper mineralization: evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA. Miner. Deposita 36, 799–806 (2001).

  53. 53.

    Evans, K.-A. & Tomkins, A.-G. The relationship between subduction zone redox budget and arc magma fertility. Earth Planet. Sci. Lett. 308, 401–409 (2011).

  54. 54.

    Goldfarb, R. J., Bradley, D. & Leach, D. L. Secular variation in economic geology. Econ. Geol. 105, 459–465 (2010).

  55. 55.

    Dupont, C. L., Butcher, A., Valas, R. E., Bourne, P. E. & Caetano-Anollés, G. History of biological metal utilization inferred through phylogenomic analysis of protein structures. Proc. Natl Acad. Sci. USA 107, 10567–10572 (2010).

  56. 56.

    Lambert, G., Le Cloarec, M., Ardouin, B. & Le Roulley, J. Volcanic emission of radionuclides and magma dynamics. Earth Planet. Sci. Lett. 76, 185–192 (1985).

  57. 57.

    Pennisi, M., Le Cloarec, M., Lambert, G. & Le Roulley, J. Fractionation of metals in volcanic emissions. Earth Planet. Sci. Lett. 88, 284–288 (1988).

  58. 58.

    Pennisi, M. & Le Cloarec, M. F. Variations of Cl, F, and S in Mount Etna’s plume, Italy, between 1992 and 1995. J. Geophys. Res. Solid Earth 103, 5061–5066 (1998).

  59. 59.

    Rubin, K. Degassing of metals and metalloids from erupting seamount and mid-ocean ridge volcanoes: observations and predictions. Geochim. Cosmochim. Acta 61, 3525–3542 (1997).

  60. 60.

    Sides, I. R., Edmonds, M., Maclennan, J., Swanson, D. A. & Houghton, B. F. Eruption style at Kīlauea Volcano in Hawai’i linked to primary melt composition. Nat. Geosci. 7, 464–469 (2014).

Download references

Acknowledgements

E.J.L. is funded by a Leverhulme Early Career Fellowship.

Competing interests

The authors declare no competing interests.

Author information

Affiliations

  1. Department of Earth Sciences, University of Cambridge, Cambridge, UK

    • Marie Edmonds
    •  & Emma J. Liu
  2. Department of Earth Sciences, University of Oxford, Oxford, UK

    • Tamsin A. Mather

Authors

  1. Search for Marie Edmonds in:

  2. Search for Tamsin A. Mather in:

  3. Search for Emma J. Liu in:

Contributions

All authors contributed equally to the concept and intellectual content of this Article. M.E. took main responsibility for writing the Article and for revising it after review.

Corresponding author

Correspondence to Marie Edmonds.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–4, Supplementary Tables 1 and 2, method information.

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41561-018-0214-5