A distinct metal fingerprint in arc volcanic emissions


As well as gases that regulate climate over geological time, volcanoes emit prodigious quantities of metals into the atmosphere, where they have key roles as catalysts, pollutants and nutrients. Here we compare measurements of arc basaltic volcano metal emissions with those from hotspot settings. As well as emitting higher fluxes of metals (similar to those building ore deposits), these arc emissions possess a distinct compositional fingerprint, particularly rich in tungsten, arsenic, thallium, antimony and lead when compared with those from hotspots. We propose that volcanic metal emissions are controlled by magmatic water content and redox: hydrous arc magmas that do not undergo sulfide saturation yield metal-rich, saline aqueous fluid; shallow degassing and resorption of late-stage sulfides feeds volcanic gases in Hawai’i and Iceland. Although global arc magma chemistries vary considerably, our findings suggest that volcanic emissions in arcs have a distinct fingerprint when compared with other settings. A shift in global volcanic metal emissions may have occurred in Earth’s past as more oxidized, water-rich magmas became prevalent, influencing the surface environment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Metal systematics in the gas plumes of active basaltic volcanoes in a range of settings.
Fig. 2: Volcanic gas data, compared with metal partitioning between silicate melt, sulfide and aqueous fluid.
Fig. 3: Metal pathways through silicate melt, sulfide and aqueous fluid, and their impact on the metal composition of basaltic volcanic gas and aerosol.


  1. 1.

    Nealson, K. H., Belz, A. & McKee, B. Breathing metals as a way of life: geobiology in action. A. Van Leeuw. J. Microbiol. 81, 215–222 (2002).

    Article  Google Scholar 

  2. 2.

    Graedel, T., Weschler, C. & Mandich, M. Influence of transition metal complexes on atmospheric droplet acidity. Nature 317, 240–242 (1985).

    Article  Google Scholar 

  3. 3.

    Hedenquist, J. W. & Lowenstern, J. B. The role of magmas in the formation of hydrothermal ore deposits. Nature 370, 519–527 (1994).

    Article  Google Scholar 

  4. 4.

    Williams-Jones, A. E. & Heinrich, C. A. 100th anniversary special paper: vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ. Geol. 100, 1287–1312 (2005).

    Article  Google Scholar 

  5. 5.

    Stoiber, R. E. & Rose, W. I. Fumarole incrustations at active Central American volcanoes. Geochim. Cosmochim. Acta 38, 495–516 (1974).

    Article  Google Scholar 

  6. 6.

    Allard, P. et al. Acid gas and metal emission rates during long‐lived basalt degassing at Stromboli volcano. Geophys. Res. Lett. 27, 1207–1210 (2000).

    Article  Google Scholar 

  7. 7.

    Moune, S., Gauthier, P.-J. & Delmelle, P. Trace elements in the particulate phase of the plume of Masaya Volcano, Nicaragua. J. Volcanol. Geotherm. Res. 193, 232–244 (2010).

    Article  Google Scholar 

  8. 8.

    Gauthier, P.-J. & Le Cloarec, M.-F. Variability of alkali and heavy metal fluxes released by Mt. Etna volcano, Sicily, between 1991 and 1995. J. Volcanol. Geotherm. Res. 81, 311–326 (1998).

    Article  Google Scholar 

  9. 9.

    Gauthier, P. J., Sigmarsson, O., Gouhier, M., Haddadi, B. & Moune, S. Elevated gas flux and trace metal degassing from the 2014-2015 fissure eruption at the Bárðarbunga volcanic system, Iceland. J. Geophys. Res. Solid Earth 121, 1610–1630 (2016).

    Article  Google Scholar 

  10. 10.

    Mather, T. et al. Halogens and trace metal emissions from the ongoing 2008 summit eruption of Kīlauea volcano, Hawaii. Geochim. Cosmochim. Acta 83, 292–323 (2012).

    Article  Google Scholar 

  11. 11.

    Hinkley, T. K., Lamothe, P. J., Wilson, S. A., Finnegan, D. L. & Gerlach, T. M. Metal emissions from Kilauea, and a suggested revision of the estimated worldwide metal output by quiescent degassing of volcanoes. Earth Planet. Sci. Lett. 170, 315–325 (1999).

    Article  Google Scholar 

  12. 12.

    Aiuppa, A., Dongarrà, G., Valenza, M., Federico, C. & Pecoraino, G. in Volcanism and the Earth’s Atmosphere Vol. 139 (eds A. Robock & C. Oppenheimer) 41–54 (American Geophysical Union, Washington DC, 2003).

  13. 13.

    Hong, S., Candelone, J.-P., Soutif, M. & Boutron, C. F. A reconstruction of changes in copper production and copper emissions to the atmosphere during the past 7000 years. Sci. Total Environ. 188, 183–193 (1996).

    Article  Google Scholar 

  14. 14.

    Richards, J. P. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol. Rev. 40, 1–26 (2011).

    Article  Google Scholar 

  15. 15.

    Keith, M., Haase, K. M., Klemd, R., Schwarz-Schampera, U. & Franke, H. Systematic variations in magmatic sulphide chemistry from mid-ocean ridges, back-arc basins and island arcs. Chem. Geol. 451, 67–77 (2016).

    Article  Google Scholar 

  16. 16.

    Jenner, F. E., O’Neill, H. S. C., Arculus, R. J. & Mavrogenes, J. A. The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu. J. Petrol. 51, 2445–2464 (2010).

    Article  Google Scholar 

  17. 17.

    Patten, C., Barnes, S.-J., Mathez, E. A. & Jenner, F. E. Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets. Chem. Geol. 358, 170–188 (2013).

    Article  Google Scholar 

  18. 18.

    Hinkley, T. K., Le Cloarec, M.-F. & Lambert, G. Fractionation of families of major, minor, and trace metals across the melt–vapor interface in volcanic exhalations. Geochim. Cosmochim. Acta 58, 3255–3263 (1994).

    Article  Google Scholar 

  19. 19.

    Li, C. & Ripley, E. M. Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits. Miner. Deposita 40, 218–230 (2005).

    Article  Google Scholar 

  20. 20.

    Jenner, F. E. Cumulate causes for the low contents of sulfide-loving elements in the continental crust. Nat. Geosci. 10, 524 (2017).

    Article  Google Scholar 

  21. 21.

    Johnson, A. & Canil, D. The degassing behavior of Au, Tl, As, Pb, Re, Cd and Bi from silicate liquids: experiments and applications. Geochim. Cosmochim. Acta 75, 1773–1784 (2011).

    Article  Google Scholar 

  22. 22.

    Kiseeva, E. S. & Wood, B. J. A simple model for chalcophile element partitioning between sulphide and silicate liquids with geochemical applications. Earth Planet. Sci. Lett. 383, 68–81 (2013).

    Article  Google Scholar 

  23. 23.

    Heinrich, C., Günther, D., Audétat, A., Ulrich, T. & Frischknecht, R. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology 27, 755–758 (1999).

    Article  Google Scholar 

  24. 24.

    Botcharnikov, R. E. et al. Behavior of gold in a magma at sulfide–sulfate transition: revisited. Am. Mineral. 98, 1459–1464 (2013).

    Article  Google Scholar 

  25. 25.

    Guo, H. & Audétat, A. Transfer of volatiles and metals from mafic to felsic magmas in composite magma chambers: an experimental study. Geochim. Cosmochim. Acta 198, 360–378 (2017).

    Article  Google Scholar 

  26. 26.

    Zajacz, Z., Candela, P. A., Piccoli, P. M. & Sanchez-Valle, C. The partitioning of sulfur and chlorine between andesite melts and magmatic volatiles and the exchange coefficients of major cations. Geochim. Cosmochim. Acta 89, 81–101 (2012).

    Article  Google Scholar 

  27. 27.

    Zajacz, Z., Candela, P. A., Piccoli, P. M., Wälle, M. & Sanchez-Valle, C. Gold and copper in volatile saturated mafic to intermediate magmas: solubilities, partitioning, and implications for ore deposit formation. Geochim. Cosmochim. Acta 91, 140–159 (2012).

    Article  Google Scholar 

  28. 28.

    Keppler, H. & Wyllie, P. J. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite–H2O−HCl and haplogranite–H2O−HF. Contrib. Mineral. Petrol. 109, 139–150 (1991).

    Article  Google Scholar 

  29. 29.

    Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E. H. & Wallace, P. J. Why do mafic arc magmas contain ~4wt% water on average? Earth Planet. Sci. Lett. 364, 168–179 (2013).

    Article  Google Scholar 

  30. 30.

    Wallace, P. J. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 140, 217–240 (2005).

    Article  Google Scholar 

  31. 31.

    Dixon, J. E. & Clague, D. A. Volatiles in basaltic glasses from Loihi Seamount, Hawaii: evidence for a relatively dry plume component. J. Petrol. 42, 627–654 (2001).

    Article  Google Scholar 

  32. 32.

    Gerlach, T. M., McGee, K. A., Elias, T., Sutton, A. J. & Doukas, M. P. Carbon dioxide emission rate of Kilauea Volcano: implications for primary magma and the summit reservoir. J. Geophys. Res. Solid Earth 107, ECV 3-1–ECV 3-15 (2002).

    Article  Google Scholar 

  33. 33.

    Moore, G., Vennemann, T., & Carmichael, I. S. E. An empirical model for the solubility of H2O in magmas to 3 kilobars. Am. Mineral. 83, 36–42 (1998).

    Article  Google Scholar 

  34. 34.

    Gerlach, T. M. Exsolution of H2O, CO2, and S during eruptive episodes at Kīlauea Volcano, Hawaii. J. Geophys. Res. Solid Earth 91, 12177–12185 (1986).

    Article  Google Scholar 

  35. 35.

    van Hinsberg, V., Berlo, K., Migdisov, A. & Williams-Jones, A. CO2-fluxing collapses metal mobility in magmatic vapour. Geochem. Perspect. Lett. 2, 169–177 (2016).

    Article  Google Scholar 

  36. 36.

    Liu, Y., Samaha, N.-T. & Baker, D. R. Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts. Geochim. Cosmochim. Acta 71, 1783–1799 (2007).

    Article  Google Scholar 

  37. 37.

    Carroll, M. & Rutherford, M. Sulfide and sulfate saturation in hydrous silicate melts. J. Geophys. Res. Solid Earth 90, C601–C612 (1985).

    Article  Google Scholar 

  38. 38.

    Metrich, N. & Clocchiatti, R. Sulfur abundance and its speciation in oxidized alkaline melts. Geochim. Cosmochim. Acta 60, 4151–4160 (1996).

    Article  Google Scholar 

  39. 39.

    Jugo, P. J. Sulfur content at sulfide saturation in oxidized magmas. Geology 37, 415–418 (2009).

    Article  Google Scholar 

  40. 40.

    Allard, P. et al. Prodigious emission rates and magma degassing budget of major, trace and radioactive volatile species from Ambrym basaltic volcano, Vanuatu island Arc. J. Volcanol. Geotherm. Res. 322, 119–143 (2016).

    Article  Google Scholar 

  41. 41.

    Gíslason, S. et al. Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland. Geochem. Perspect. Lett. 1, 84–93 (2015).

    Article  Google Scholar 

  42. 42.

    Wallace, P. J. & Carmichael, I. S. E. Sulfur in basaltic magmas. Geochim. Cosmochim. Acta 56, 1863–1874 (1992).

    Article  Google Scholar 

  43. 43.

    Richards, J. P. High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: just add water. Econ. Geol. 106, 1075–1081 (2011).

    Article  Google Scholar 

  44. 44.

    Zajacz, Z., Halter, W. E., Pettke, T. & Guillong, M. Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: controls on element partitioning. Geochim. Cosmochim. Acta 72, 2169–2197 (2008).

    Article  Google Scholar 

  45. 45.

    Peach, C., Mathez, E. & Keays, R. Sulfide melt–silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: implications for partial melting. Geochim. Cosmochim. Acta 54, 3379–3389 (1990).

    Article  Google Scholar 

  46. 46.

    Mungall, J. E., Brenan, J. M., Godel, B., Barnes, S. & Gaillard, F. Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles. Nat. Geosci. 8, 216–219 (2015).

    Article  Google Scholar 

  47. 47.

    Le Vaillant, M., Barnes, S. J., Mungall, J. E. & Mungall, E. L. Role of degassing of the Noril'sk nickel deposits in the Permian-Triassic mass extinction event. Proc. Natl Acad. Sci. USA 114, 2485–2490 (2017).

    Article  Google Scholar 

  48. 48.

    Larocque, A. C., Stimac, J. A., Keith, J. D. & Huminicki, M. A. Evidence for open-system behavior in immiscible Fe–S–O liquids in silicate magmas: implications for contributions of metals and sulfur to ore-forming fluids. Can. Mineral. 38, 1233–1249 (2000).

    Article  Google Scholar 

  49. 49.

    Nadeau, O., Williams-Jones, A. E. & Stix, J. Sulphide magma as a source of metals in arc-related magmatic hydrothermal ore fluids. Nat. Geosci. 3, 501–505 (2010).

    Article  Google Scholar 

  50. 50.

    Schmidt, M. E. & Grunder, A. L. Deep mafic roots to arc volcanoes: mafic recharge and differentiation of basaltic andesite at North Sister Volcano, Oregon Cascades. J. Petrol. 52, 603–641 (2011).

    Article  Google Scholar 

  51. 51.

    Parmigiani, A., Faroughi, S., Huber, C., Bachmann, O. & Su, Y. Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust. Nature 532, 492–495 (2016).

    Article  Google Scholar 

  52. 52.

    Hattori, K. H. & Keith, J. D. Contribution of mafic melt to porphyry copper mineralization: evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA. Miner. Deposita 36, 799–806 (2001).

    Article  Google Scholar 

  53. 53.

    Evans, K.-A. & Tomkins, A.-G. The relationship between subduction zone redox budget and arc magma fertility. Earth Planet. Sci. Lett. 308, 401–409 (2011).

    Article  Google Scholar 

  54. 54.

    Goldfarb, R. J., Bradley, D. & Leach, D. L. Secular variation in economic geology. Econ. Geol. 105, 459–465 (2010).

    Article  Google Scholar 

  55. 55.

    Dupont, C. L., Butcher, A., Valas, R. E., Bourne, P. E. & Caetano-Anollés, G. History of biological metal utilization inferred through phylogenomic analysis of protein structures. Proc. Natl Acad. Sci. USA 107, 10567–10572 (2010).

    Article  Google Scholar 

  56. 56.

    Lambert, G., Le Cloarec, M., Ardouin, B. & Le Roulley, J. Volcanic emission of radionuclides and magma dynamics. Earth Planet. Sci. Lett. 76, 185–192 (1985).

    Article  Google Scholar 

  57. 57.

    Pennisi, M., Le Cloarec, M., Lambert, G. & Le Roulley, J. Fractionation of metals in volcanic emissions. Earth Planet. Sci. Lett. 88, 284–288 (1988).

    Article  Google Scholar 

  58. 58.

    Pennisi, M. & Le Cloarec, M. F. Variations of Cl, F, and S in Mount Etna’s plume, Italy, between 1992 and 1995. J. Geophys. Res. Solid Earth 103, 5061–5066 (1998).

    Article  Google Scholar 

  59. 59.

    Rubin, K. Degassing of metals and metalloids from erupting seamount and mid-ocean ridge volcanoes: observations and predictions. Geochim. Cosmochim. Acta 61, 3525–3542 (1997).

    Article  Google Scholar 

  60. 60.

    Sides, I. R., Edmonds, M., Maclennan, J., Swanson, D. A. & Houghton, B. F. Eruption style at Kīlauea Volcano in Hawai’i linked to primary melt composition. Nat. Geosci. 7, 464–469 (2014).

    Article  Google Scholar 

Download references


E.J.L. is funded by a Leverhulme Early Career Fellowship.

Competing interests

The authors declare no competing interests.

Author information




All authors contributed equally to the concept and intellectual content of this Article. M.E. took main responsibility for writing the Article and for revising it after review.

Corresponding author

Correspondence to Marie Edmonds.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–4, Supplementary Tables 1 and 2, method information.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Edmonds, M., Mather, T.A. & Liu, E.J. A distinct metal fingerprint in arc volcanic emissions. Nature Geosci 11, 790–794 (2018). https://doi.org/10.1038/s41561-018-0214-5

Download citation

Further reading