Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves

Abstract

Oceanic mesoscale structures such as eddies and fronts can alter the propagation, breaking and subsequent turbulent mixing of wind-generated internal waves. However, it has been difficult to ascertain whether these processes affect the global-scale patterns, timing and magnitude of turbulent mixing, thereby powering the global oceanic overturning circulation and driving the transport of heat and dissolved gases. Here we present global evidence demonstrating that mesoscale features can significantly enhance turbulent mixing due to wind-generated internal waves. Using internal wave-driven mixing estimates calculated from Argo profiling floats between 30° and 45° N, we find that both the amplitude of the seasonal cycle of turbulent mixing and the response to increases in the wind energy flux are larger to a depth of at least 2,000 m in the presence of a strong and temporally uniform field of mesoscale eddy kinetic energy. Mixing is especially strong within energetic anticyclonic mesoscale features compared to cyclonic features, indicating that local modification of wind-driven internal waves is probably one mechanism contributing to the elevated mixing observed in energetic mesoscale environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mixing, eddy kinetic energy and energy flux from the winds showing global variability.
Fig. 2: Seasonal cycle in mixing extends to 2,000 m and is correlated with energy flux from the winds.
Fig. 3: Mixing seasonal cycle is larger in an energetic mesoscale.
Fig. 4: Mixing response to wind is stronger in an energetic mesoscale.
Fig. 5: Mixing is slightly elevated in regions of anticyclonic vorticity.

Similar content being viewed by others

References

  1. Alford, M. H., MacKinnon, J. A., Simmons, H. L. & Nash, J. D. Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci. 8, 95–123 (2016).

    Article  Google Scholar 

  2. MacKinnon, J. A. et al. Climate process team on internal-wave driven ocean mixing. Bull. Am. Meteorol. Soc. 98, 2429–2454 (2017).

    Article  Google Scholar 

  3. Rimac, A., Storch, J.-S., Eden, C. & Haak, H. The influence of high-resolution wind stress field on the power input to near-inertial motions in the ocean. Geophys. Res. Lett. 40, 4882–4886 (2013).

    Article  Google Scholar 

  4. Jochum, M. et al. The impact of oceanic near-inertial waves on climate. J. Clim. 26, 2833–2844 (2013).

    Article  Google Scholar 

  5. Weller, R. A. The relation of near-inertial motions observed in the mixed layer during the JASIN (1978) experiment to the local wind stress and to the quasi-geostrophic flow field. J. Phys. Oceanogr. 12, 1122–1136 (1982).

    Article  Google Scholar 

  6. Kunze, E., Schmitt, R. W. & Toole, J. M. Near-inertial wave-propagation in geostrophic shear. J. Phys. Oceanogr. 15, 544–565 (1985).

    Article  Google Scholar 

  7. Young, W. & Jelloul, M. B. Propagation of near-inertial oscillations through a geostrophic flow. J. Mar. Res. 55, 735–766 (1997).

    Article  Google Scholar 

  8. Klein, P., Smith, S. L. & Lapeyre, G. Organization of near-inertial energy by an eddy field. Q. J. R. Meteorol. Soc. 130, 1153–1166 (2004).

    Article  Google Scholar 

  9. Müller, P. On the diffusion of momentum and mass by internal gravity waves. J. Fluid. Mech. 77, 789–823 (1976).

    Article  Google Scholar 

  10. Bühler, O. & McIntyre, M. E. Wave capture and wave-vortex duality. J. Fluid. Mech. 534, 67–95 (2005).

    Article  Google Scholar 

  11. Polzin, K. L. Mesoscale eddy-internal wave coupling. Part II: energetics and results from PolyMode. J. Phys. Oceanogr. 40, 789–801 (2010).

    Article  Google Scholar 

  12. Polzin, K. L. & Lvov, Y. V. Toward regional characterizations of the oceanic internal wavefield. Rev. Geophys. 49, RG4003 (2011).

  13. Mooers, C. N. Several effects of a baroclinic current on the cross-stream propagation of inertial-internal waves. Geophys. Astro. Fluid. 6, 245–275 (1975).

    Google Scholar 

  14. Whitt, D. & Thomas, L. Near-inertial waves in strongly baroclinic currents. J. Phys. Oceanogr. 43, 706–725 (2013).

    Article  Google Scholar 

  15. Whalen, C. B., Talley, L. D. & MacKinnon, J. A. Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett. 39, L18612 (2012).

    Article  Google Scholar 

  16. Lueck, R. & Osborn, T. The dissipation of kinetic energy in a warm-core ring. J. Geophys. Res. Oceans 91, 803–818 (1986).

    Article  Google Scholar 

  17. Padman, L., Levine, M., Dillon, T., Morison, J. & Pinkel, R. Hydrography and microstructure of an Arctic Cyclonic Eddy. J. Geophys. Res. Oceans 95, 9411–9420 (1990).

    Article  Google Scholar 

  18. Kunze, E., Schmitt, R. W. & Toole, J. M. The energy balance in a warm-core ring’s near-inertial critical layer. J. Phys. Oceanogr. 25, 942–957 (1995).

    Article  Google Scholar 

  19. Sheen, K. L. et al. Modification of turbulent dissipation rates by a deep Southern Ocean eddy. Geophys. Res. Lett. 42, 3450–3457 (2015).

    Article  Google Scholar 

  20. Osborn, T. R. Estimates of the local-rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 10, 83–89 (1980).

    Article  Google Scholar 

  21. Whalen, C. B., MacKinnon, J. A., Talley, L. D. & Waterhouse, A. F. Estimating the mean diapycnal mixing using a finescale strain parameterization. J. Phys. Oceanogr. 45, 1174–1188 (2015).

    Article  Google Scholar 

  22. Henyey, F. S., Wright, J. & Flatte, S. M. Energy and action flow through the internal wave feild: an eikonal approach. J. Geophys. Res. Oceans 91, 8487–8495 (1986).

    Article  Google Scholar 

  23. Gregg, M. & Kunze, E. Shear and strain in Santa Monica basin. J. Geophys. Res. Oceans 96, 16709–16719 (1991).

    Article  Google Scholar 

  24. Polzin, K. L., Toole, J. M. & Schmitt, R. W. Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr. 25, 306–328 (1995).

    Article  Google Scholar 

  25. Kunze, E., Firing, E., Hummon, J. M., Chereskin, T. K., & Thurnherr, A. M. Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr. 36, 1553–1576 (2006).

    Article  Google Scholar 

  26. Polzin, K. L., Naveira Garabato, A. C., Huussen, T. N., Sloyan, B. M. & Waterman, S. N. Finescale parameterizations of turbulent dissipation. J. Geophys. Res. Oceans 119, 1383–1419 (2014).

    Article  Google Scholar 

  27. Alford, M., Cronin, M. & Klymak, J. Annual cycle and depth penetration of wind-generated near-inertial internal waves at Ocean Station Papa in the Northeast Pacific. J. Phys. Oceanogr. 42, 889–909 (2012).

    Article  Google Scholar 

  28. Alford, M. H. & Whitmont, M. Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records. J. Phys. Oceanogr. 37, 2022–2037 (2007).

    Article  Google Scholar 

  29. Silverthorne, K. E. & Toole, J. M. Seasonal kinetic energy variability of near-inertial motions. J. Phys. Oceanogr. 39, 1035–1049 (2009).

    Article  Google Scholar 

  30. Zhai, X., Greatbatch, R. J. & Eden, C. Spreading of near-inertial energy in a 1/12 model of the North Atlantic Ocean. Geophys. Res. Lett. 34, L10609 (2007).

  31. Dunphy, M, & Lamb, K. G. Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction. J. Geophys. Res. Oceans 119, 523–536 (2014).

    Article  Google Scholar 

  32. Kerry, C. G., Powell, B. S. & Carter, G. S. The impact of subtidal circulation on internal tide generation and propagation in the Philippine Sea. J. Phys. Oceanogr. 44, 1386–1405 (2014).

    Article  Google Scholar 

  33. Vanneste, J. Balance and spontaneous wave generation in geophysical flows. Ann. Rev. Fluid Mech. 45, 147–172 (2013).

    Article  Google Scholar 

  34. Danioux, E., Vanneste, J., Klein, P. & Sasaki, H. Spontaneous inertia-gravity-wave generation by surface-intensified turbulence. J. Fluid. Mech. 699, 153–173 (2012).

    Article  Google Scholar 

  35. Reeder, M. J. & Griffiths, M. Stratospheric inertia-gravity waves generated in a numerical model of frontogenesis II: wave sources, generation mechanisms and momentum fluxes.Q. J. R. Meteorol. Soc 122, 1175–1195 (1996).

    Google Scholar 

  36. Alford, M. H., MacKinnon, J. A., Pinkel, R. & Klymak, J. M. Space-time scales of shear in the North Pacific. J. Phys. Oceanogr. 47, 2455–2478 (2017).

    Article  Google Scholar 

  37. Nikurashin, M. & Ferrari, R. Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett. 38, L08610 (2011).

    Article  Google Scholar 

  38. Xie, J.-H. & Vanneste, J. A generalised-Lagrangian-mean model of the interactions between near-inertial waves and mean flow. J. Fluid. Mech. 774, 143–169 (2015).

    Article  Google Scholar 

  39. Wagner, G. & Young, W. Available potential vorticity and wave-averaged quasi-geostrophic flow. J. Fluid. Mech. 785, 401–424 (2015).

    Article  Google Scholar 

  40. Danioux, E., Klein, P. & Rivière, P. Propagation of wind energy into the deep ocean through a fully turbulent mesoscale eddy field. J. Phys. Oceanogr. 38, 2224–2241 (2008).

    Article  Google Scholar 

  41. Elipot, S., Lumpkin, R. & Prieto, G. Modification of inertial oscillations by the mesoscale eddy field. J. Geophys. Res. Oceans 115, C09010 (2010).

  42. Jones, W. L. Ray tracing for internal gravity waves. J. Geophys. Res. 74, 2028–2033 (1969).

    Article  Google Scholar 

  43. Polzin, K. L. Mesoscale eddy-internal wave coupling. Part I: Symmetry, wave capture, and results from the mid-ocean dynamics experiment. J. Phys. Oceanogr. 38, 2556–2574 (2008).

    Article  Google Scholar 

  44. Billheimer, S. & Talley, L. D. Annual cycle and destruction of eighteen degree water. J. Geophys. Res. Oceans 121, 6604–6617 (2016).

    Article  Google Scholar 

  45. Pollard, R. T. & Millard, R. C. Comparison between observed and simulated wind-generated inertial oscillations. In Deep Sea Research and Oceanographic Abstracts Vol. 17, 813–821 (Elsevier, 1970).

    Article  Google Scholar 

  46. D’Asaro, E. A. The energy flux from the wind to near-inertial motions in the surface mixed layer. J. Phys. Oceanogr. 15, 1043–1059 (1985).

    Article  Google Scholar 

  47. Alford, M. H. Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr. 31, 2359–2368 (2001).

    Article  Google Scholar 

  48. Plueddemann, A. & Farrar, J. Observations and models of the energy flux from the wind to mixed-layer inertial currents. Deep-Sea Res. Pt II 53, 5–30 (2006).

    Article  Google Scholar 

  49. Van Meurs, P. Interactions between near-inertial mixed layer currents and the mesoscale: The importance of spatial variabilities in the vorticity field. J. Phys. Oceanogr. 28, 1363–1388 (1998).

    Article  Google Scholar 

  50. Whitt, D. B. & Thomas, L. N. Resonant generation and energetics of wind-forced near-inertial motions in a geostrophic flow. J. Phys. Oceanogr. 45, 181–208 (2015).

    Article  Google Scholar 

  51. Park, J. J., Kim, K. & Schmitt, R. W. Global distribution of the decay timescale of mixed layer inertial motions observed by satellite-tracked drifters. J. Geophys. Res. Oceans 114, C11010 (2009).

  52. D’Asaro, E. A. et al. Upper-ocean inertial currents forced by a strong storm. I: Data and comparisons with linear-theory. J. Phys. Oceanogr. 25, 2909–2936 (1995).

    Article  Google Scholar 

  53. Lumpkin, R. & Garraffo, Z. Evaluating the decomposition of tropical Atlantic drifter observations. J. Atmos. Oceanic Technol. 22, 1403–1415 (2005).

    Article  Google Scholar 

  54. Arbic, B. K., Scott, R. B., Chelton, D. B., Richman, J. G. & Shriver, J. F. Effects of stencil width on surface ocean geostrophic velocity and vorticity estimation from gridded satellite altimeter data. J. Geophys. Res. Oceans 117, C03029 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of NSF OCE-1259573 and for valuable comments from K. Polzin and E. Kunze.

Author information

Authors and Affiliations

Authors

Contributions

C.B.W conceived of the study, conducted the analysis, and wrote the manuscript. Both J.A.M and L.D.T. contributed to the analysis and writing of the manuscript.

Corresponding author

Correspondence to C. B. Whalen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whalen, C.B., MacKinnon, J.A. & Talley, L.D. Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nature Geosci 11, 842–847 (2018). https://doi.org/10.1038/s41561-018-0213-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0213-6

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene