Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enhanced global primary production by biogenic aerosol via diffuse radiation fertilization

Matters Arising to this article was published on 26 August 2019


Terrestrial vegetation releases large quantities of plant volatiles into the atmosphere that can then oxidize to form secondary organic aerosol. These particles affect plant productivity through the diffuse radiation fertilization effect by altering the balance between direct and diffuse radiation reaching the Earth’s surface. Here, using a suite of models describing relevant coupled components of the Earth system, we quantify the impacts of biogenic secondary organic aerosol on plant photosynthesis through this fertilization effect. We show that this leads to a net primary productivity enhancement of 1.23 Pg C yr−1 (range 0.76–1.61 Pg C yr−1 due to uncertainty in biogenic secondary organic aerosol formation). Notably, this productivity enhancement is twice the mass of biogenic volatile organic compound emissions (and ~30 times larger than the mass of carbon in biogenic secondary organic aerosol) causing it. Hence, our simulations indicate that there is a strong positive ecosystem feedback between biogenic volatile organic compound emissions and plant productivity through plant-canopy light-use efficiency. We estimate a gain of 1.07 in global biogenic volatile organic compound emissions resulting from this feedback.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Comparison of monthly-mean simulated AOD against AERONET observations.
Fig. 2: Simulated impact of biogenic SOA on surface radiation.
Fig. 3: Simulated diffuse radiation fertilization effect caused by the 50 Tg yr−1 biogenic SOA source.
Fig. 4: Simulated global feedback loop between plant emissions and plant productivity.


  1. 1.

    Guenther, A. et al. A global model of natural volatile organic compound emissions. J. Geophys. Res. Atmos. 100, 8873–8892 (1995).

    Article  Google Scholar 

  2. 2.

    Carslaw, K. S. et al. A review of natural aerosol interactions and feedbacks within the Earth system. Atmos. Chem. Phys. 10, 1701–1737 (2010).

    Article  Google Scholar 

  3. 3.

    Arneth, A. et al. Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci. 3, 525–532 (2010).

    Article  Google Scholar 

  4. 4.

    Niinemets, Ü., Tenhunen, J. D., Harley, P. C. & Steinbrecher, R. A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus. Plant Cell Environ. 22, 1319–1335 (1999).

    Article  Google Scholar 

  5. 5.

    Heald, C. L. et al. Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change. J. Geophys. Res. Atmos. 113, D05211 (2008).

    Article  Google Scholar 

  6. 6.

    Peñuelas, J. & Staudt, M. BVOCs and global change. Trends Plant. Sci. 15, 133–144 (2010).

    Article  Google Scholar 

  7. 7.

    Paasonen, P. et al. Warming-induced increase in aerosol number concentration likely to moderate climate change. Nat. Geosci. 6, 438–442 (2013).

    Article  Google Scholar 

  8. 8.

    Laothawornkitkul, J., Taylor, J. E., Paul, N. D. & Hewitt, C. N. Biogenic volatile organic compounds in the Earth system. New Phytol. 183, 27–51 (2009).

    Article  Google Scholar 

  9. 9.

    Scott, C. al. Impact on short-lived climate forcers increases projected warming due to deforestation. Nat. Commun. 9, 157 (2018).

    Article  Google Scholar 

  10. 10.

    Rap, A. et al. Natural aerosol direct and indirect radiative effects. Geophys. Res. Lett. 40, 3297–3301 (2013).

    Article  Google Scholar 

  11. 11.

    Scott, C. E. et al. The direct and indirect radiative effects of biogenic secondary organic aerosol. Atmos. Chem. Phys. 14, 447–470 (2014).

    Article  Google Scholar 

  12. 12.

    Roderick, M. L., Farquhar, G. D., Berry, S. L. & Noble, I. R. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia. 129, 21–30 (2001).

    Article  Google Scholar 

  13. 13.

    Gu, L. H. et al. Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science 299, 2035–2038 (2003).

    Article  Google Scholar 

  14. 14.

    Cirino, G. G., Souza, R. A. F., Adams, D. K. & Artaxo, P. The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon. Atmos. Chem. Phys. 14, 6523–6543 (2014).

    Article  Google Scholar 

  15. 15.

    Rap, A. et al. Fires increase Amazon forest productivity through increases in diffuse radiation. Geophys. Res. Lett. 42, 4654–4662 (2015).

    Article  Google Scholar 

  16. 16.

    Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).

    Article  Google Scholar 

  17. 17.

    Zhang, Q. et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett. 34, L13801 (2007).

    Google Scholar 

  18. 18.

    Jimenez, J. L. et al. Evolution of organic aerosols in the atmosphere. Science 326, 1525–1529 (2009).

    Article  Google Scholar 

  19. 19.

    Kulmala, M. N. et al. CO2-induced terrestrial climate feedback mechanism: from carbon sink to aerosol source and back. Boreal. Environ. Res. 19, 122–131 (2014).

    Google Scholar 

  20. 20.

    Mann, G. W. et al. Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition–climate model. Geosci. Model Dev. 3, 519–551 (2010).

    Article  Google Scholar 

  21. 21.

    Edwards, J. M. & Slingo, A. Studies with a flexible new radiation code. 1. Choosing a configuration for a large-scale model. Q. J. R. Meteorol. Soc. 122, 689–719 (1996).

    Article  Google Scholar 

  22. 22.

    O’Sullivan, M. et al. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century. Geophys. Res. Lett. 43, 8060–8067 (2016).

    Article  Google Scholar 

  23. 23.

    Arneth, A., Monson, R. K., Schurgers, G., Niinemets, Ü. & Palmer, P. I. Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)? Atmos. Chem. Phys. 8, 4605–4620 (2008).

    Article  Google Scholar 

  24. 24.

    Schurgers, G., Arneth, A., Holzinger, R. & Goldstein, A. H. Process-based modelling of biogenic monoterpene emissions combining production and release from storage. Atmos. Chem. Phys. 9, 3409–3423 (2009).

    Article  Google Scholar 

  25. 25.

    Guenther, A. B. et al. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model. Dev. 5, 1471–1492 (2012).

    Article  Google Scholar 

  26. 26.

    Tsigaridis, K. et al. The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmos. Chem. Phys. 14, 10845–10895 (2014).

    Article  Google Scholar 

  27. 27.

    Bey, I. et al. Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation. J. Geophys. Res. Atmos. 106, 23073–23095 (2001).

    Article  Google Scholar 

  28. 28.

    Liao, H., Henze, D. K., Seinfeld, J. H., Wu, S. & Mickley, L. J. Biogenic secondary organic aerosol over the United States: comparison of climatological simulations with observations. J. Geophys. Res. Atmos. 112, D06201 (2007).

    Article  Google Scholar 

  29. 29.

    Pye, H. O. T., Chan, A. W. H., Barkley, M. P. & Seinfeld, J. H. Modeling of organic aerosol: the importance of reactive nitrogen (NOx and NO3). Atmos. Chem. Phys. 10, 11261–11276 (2010).

    Article  Google Scholar 

  30. 30.

    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    Article  Google Scholar 

  31. 31.

    Strada, S. & Unger, N. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution. Atmos. Chem. Phys. 16, 4213–4234 (2016).

    Article  Google Scholar 

  32. 32.

    Arneth, A. et al. Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2–isoprene interaction. Atmos. Chem. Phys. 7, 31–53 (2007).

    Article  Google Scholar 

  33. 33.

    Unger, N. Isoprene emission variability through the twentieth century. J. Geophys. Res. Atmos. 118, 13606–13613 (2013).

    Article  Google Scholar 

  34. 34.

    Lin, G., Penner, J. E. & Zhou, C. How will SOA change in the future? Geophys. Res. Lett. 43, 1718–1726 (2016).

    Article  Google Scholar 

  35. 35.

    Le Quéré, C. et al. Global carbon budget 2017. Earth Syst. Sci. Data Discuss 10, 405–448 (2017).

    Article  Google Scholar 

  36. 36.

    Fisher, J. B., Badgley, G. & Blyth, E. Global nutrient limitation in terrestrial vegetation. Global Biogeochem. Cycles 26, GB3007 (2012).

    Article  Google Scholar 

  37. 37.

    Norby, R. J. et al. Model–data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytol. 209, 17–28 (2016).

    Article  Google Scholar 

  38. 38.

    Doughty, C. E., Flanner, M. G. & Goulden, M. L. Effect of smoke on subcanopy shaded light, canopy temperature, and carbon dioxide uptake in an Amazon rainforest. Global Biogeochem. Cycles 24, GB3015 (2010).

    Article  Google Scholar 

  39. 39.

    Spracklen, D. V., Pringle, K. J., Carslaw, K. S., Chipperfield, M. P. & Mann, G. W. A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties. Atmos. Chem. Phys. 5, 2227–2252 (2005).

    Article  Google Scholar 

  40. 40.

    Spracklen, D. V., Pringle, K. J., Carslaw, K. S., Chipperfield, M. P. & Mann, G. W. A global off-line model of size-resolved aerosol microphysics: II. Identification of key uncertainties. Atmos. Chem. Phys. 5, 3233–3250 (2005).

    Article  Google Scholar 

  41. 41.

    Stockwell, D. Z. & Chipperfield, M. P. A tropospheric chemical-transport model: development and validation of the model transport schemes. Q. J. R. Meteorol. Soc. 125, 1747–1783 (1999).

    Article  Google Scholar 

  42. 42.

    Bond, T. C. et al. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. Atmos. 109, D14203 (2004).

    Article  Google Scholar 

  43. 43.

    van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).

    Article  Google Scholar 

  44. 44.

    Gong, S. L. A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Global Biogeochem. Cycles 17, 1097 (2003).

    Article  Google Scholar 

  45. 45.

    Monks, S. A. et al. The TOMCAT global chemical transport model v1.6: description of chemical mechanism and model evaluation. Geosci. Model Dev. 10, 3025–3057 (2017).

    Article  Google Scholar 

  46. 46.

    Pacifico, F. et al. Evaluation of a photosynthesis-based biogenic isoprene emission scheme in JULES and simulation of isoprene emissions under present-day climate conditions. Atmos. Chem. Phys. 11, 4371–4389 (2011).

    Article  Google Scholar 

  47. 47.

    Best, M. J. et al. The Joint UK Land Environment Simulator (JULES), model description—Part 1: energy and water fluxes. Geosci. Model Dev. 4, 677–699 (2011).

    Article  Google Scholar 

  48. 48.

    Clark, D. B. et al. The Joint UK Land Environment Simulator (JULES), model description—Part 2: carbon fluxes and vegetation dynamics. Geosci. Model Dev. 4, 701–722 (2011).

    Article  Google Scholar 

  49. 49.

    Fuchs, N. A. & Sutugin, A. G. in Topics in Current Aerosol Research (eds Hidy, G. M. & Brock, J. R.) 1 (Pergamon, Oxford, 1971).

  50. 50.

    Scott, C. E. et al. Impact of gas-to-particle partitioning approaches on the simulated radiative effects of biogenic secondary organic aerosol. Atmos. Chem. Phys. 15, 12989–13001 (2015).

    Article  Google Scholar 

  51. 51.

    Kettle, A. J. & Andreae, M. O. Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models. J Geophys. Res. Atmos. 105, 26793–26808 (2000).

    Article  Google Scholar 

  52. 52.

    Cofala, J., Amann, M., Klimont, Z. S. & Schopp, W. Scenarios of World Anthropogenic Emissions of SO 2 , NO x and CO up to 2030 (International Institute for Applied Systems Analysis, Laxenburg, 2005).

  53. 53.

    Andres, R. J. & Kasgnoc, A. D. A time-averaged inventory of subaerial volcanic sulfur emissions. J. Geophys. Res. Atmos. 103, 25251–25261 (1998).

    Article  Google Scholar 

  54. 54.

    Halmer, M. M., Schmincke, H. U. & Graf, H. F. The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years. J. Volcanol. Geotherm. Res. 115, 511–528 (2002).

    Article  Google Scholar 

  55. 55.

    Bellouin, N. et al. Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model. Atmos. Chem. Phys. 13, 3027–3044 (2013).

    Article  Google Scholar 

  56. 56.

    Penner, J. E. et al. in Climate Change 2001: The Scientific Basis (eds Houghton, J. T. et al.) 289–348 (Cambridge Univ. Press, 2001).

  57. 57.

    Rossow, W. B. & Schiffer, R. A. Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc. 80, 2261–2287 (1999).

    Article  Google Scholar 

  58. 58.

    Butt, E. W. et al. The impact of residential combustion emissions on atmospheric aerosol, human health, and climate. Atmos. Chem. Phys. 16, 873–905 (2016).

    Article  Google Scholar 

  59. 59.

    Kapadia, Z. Z. et al. Impacts of aviation fuel sulfur content on climate and human health. Atmos. Chem. Phys. 16, 10521–10541 (2016).

    Article  Google Scholar 

  60. 60.

    Mercado, L. M., Huntingford, C., Gash, J. H. C., Cox, P. M. & Jogireddy, V. Improving the representation of radiation interception and photosynthesis for climate model applications. Tellus 59, 553–565 (2007).

    Article  Google Scholar 

  61. 61.

    Weedon, G. P. et al. Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeorol. 12, 823–848 (2011).

    Article  Google Scholar 

  62. 62.

    van Genuchten, M. T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil. Sci. Soc. Am. J. 44, 892–898 (1980).

    Article  Google Scholar 

  63. 63.

    Harmonized World Soil Database v.1.2 (FAO, IIASA);

  64. 64.

    Acosta Navarro, J. C. et al. Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium. J. Geophys. Res. Atmos. 119, 6867–6885 (2014).

    Article  Google Scholar 

  65. 65.

    Restrepo-Coupe, N. et al. What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agric. Forest. Meteorol. 182/183, 128–144 (2013).

    Article  Google Scholar 

  66. 66.

    Bonal, D. et al. Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana. Global Change Biol. 14, 1917–1933 (2008).

    Article  Google Scholar 

  67. 67.

    Holben, B. N. et al. AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 66, 1–16 (1998).

    Article  Google Scholar 

  68. 68.

    Rotstayn, L. D., Collier, M. A., Shindell, D. T. & Boucher, O. Why does aerosol forcing control historical global-mean surface temperature change in CMIP5 models? J. Clim. 28, 6608–6625 (2015).

    Article  Google Scholar 

Download references


We acknowledge funding from the Natural Environment Research Council (NE/J004723/1, NE/J009822/1 and NE/K015966/1) and EU Horizon 2020 (SC5-01-2014; grant agreement 641816). D.V.S. acknowledges support from a Philip Leverhulme Prize and C.N.H. thanks Lancaster University for funding. We thank the modellers from the TRENDY multi-model intercomparison project for access to their DGVM output and the principal investigators and their staff for establishing and maintaining the AERONET sites used in this study. We also thank A. Jarvis for initial discussions and N. Restrepo-Coupe and D. Bonal for access to the data used in Supplementary Information Fig. 7.

Author information




A.R., D.J.B., A.R.M., C.N.H. and D.V.S. contributed to the design of the study. A.R., C.E.S., C.L.R. and D.V.S. analysed and interpreted the results. A.R. carried out the radiation and land-surface modelling. C.E.S. carried out the aerosol modelling. C.L.R. analysed the AERONET data. L.M. and R.J.E. developed the land-surface modelling framework. S.G. and M.J.E. provided the GEOS-Chem simulation. All authors contributed to scientific discussions and commented on the manuscript.

Corresponding author

Correspondence to A. Rap.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1, Supplementary Figures 1–7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rap, A., Scott, C.E., Reddington, C.L. et al. Enhanced global primary production by biogenic aerosol via diffuse radiation fertilization. Nature Geosci 11, 640–644 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing