Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lower land-use emissions responsible for increased net land carbon sink during the slow warming period



The terrestrial carbon sink accelerated during 1998–2012, concurrently with the slow warming period, but the mechanisms behind this acceleration are unclear. Here we analyse recent changes in the net land carbon sink (NLS) and its driving factors, using atmospheric inversions and terrestrial carbon models. We show that the linear trend of NLS during 1998–2012 is about 0.17 ± 0.05 Pg C yr−2 , which is three times larger than during 1980–1998 (0.05 ± 0.05 Pg C yr−2). According to terrestrial carbon model simulations, the intensification of the NLS cannot be explained by CO2 fertilization or climate change alone. We therefore use a bookkeeping model to explore the contribution of changes in land-use emissions and find that decreasing land-use emissions are the dominant cause of the intensification of the NLS during the slow warming period. This reduction of land-use emissions is due to both decreased tropical forest area loss and increased afforestation in northern temperate regions. The estimate based on atmospheric inversions shows consistently reduced land-use emissions, whereas another bookkeeping model did not reproduce such changes, probably owing to missing the signal of reduced tropical deforestation. These results highlight the importance of better constraining emissions from land-use change to understand recent trends in land carbon sinks.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Anomalies and linear trends of global annual NLS and NPP.
Fig. 2: Change in the trend of NLS, NPP and HR between 1998–2012 and 1980–1998 estimated by DGVMs.
Fig. 3: Linear trend of ELUC and change in ELUC trend between 1998–2012 and 1980–1998.


  1. Easterling, D. R. & Wehner, M. F. Is the climate warming or cooling? Geophys. Res. Lett. 36, L08706 (2009).

    Article  Google Scholar 

  2. Kaufmann, R. K., Kauppi, H., Mann, M. L. & Stock, J. H. Reconciling anthropogenic climate change with observed temperature 1998-2008. Proc. Natl. Acad. Sci. USA 108, 11790–11793 (2011).

    Article  Google Scholar 

  3. Cohen, J. L., Furtado, J. C., Barlow, M. & Alexeev, V. A. Asymmetric seasonal temperature trends. Geophys. Res. Lett. 39, L04705 (2012).

    Google Scholar 

  4. Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).

    Article  Google Scholar 

  5. Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).

  6. Jong, R., Verbesselt, J., Schaepman, M. E. & Bruin, S. Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Glob. Change Biol. 18, 642–655 (2012).

    Article  Google Scholar 

  7. Mohammat, A. et al. Drought and spring cooling induced recent decrease in vegetation growth in InnerAsia. Agric. For. Meteorol. 178, 21–30 (2013).

    Article  Google Scholar 

  8. Kong, D., Zhang, Q., Singh, V. P. & Shi, P. Seasonal vegetation response to climate change in the Northern Hemisphere (1982–2013). Glob. Planet. Change 148, 1–8 (2017).

    Article  Google Scholar 

  9. Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).

    Article  Google Scholar 

  10. Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Change 7, 148–152 (2017).

    Article  Google Scholar 

  11. Zhu, Z. et al. The accelerating land carbon uptake of the 2000s may not be driven predominantly by the warming hiatus. Geophys Res Lett. 45, 1402–1409 (2018).

    Article  Google Scholar 

  12. Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850-2015. Glob. Biogeochem. Cycles 31, 456–472 (2017).

    Article  Google Scholar 

  13. Le Quéré, C. et al. Global carbon budget 2013. Earth Syst. Sci. Data 6, 235–263 (2014).

    Article  Google Scholar 

  14. Houghton, R. A. et al. Carbon emissions from land use and land-cover change. Biogeosciences 9, 5125–5142 (2012).

    Article  Google Scholar 

  15. Le Quéré, C. et al. Global carbon budget 2015. Earth Syst. Sci. Data 7, 349–396 (2015).

    Article  Google Scholar 

  16. Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.)192–194 (Cambridge Univ. Press, Cambridge, 2013).

  17. Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Change 7, 148–152 (2017).

    Article  Google Scholar 

  18. Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 7, 220–226 (2017).

    Article  Google Scholar 

  19. De Kauwe, M. G. et al. Satellite based estimates underestimate the effect of CO2 fertilization on net primary productivity. Nat. Clim. Change 6, 892–893 (2016).

    Article  Google Scholar 

  20. Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    Article  Google Scholar 

  21. Giglio, L., Randerson, J. T. & van der Werf, G. R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 118, 317–328 (2013).

    Article  Google Scholar 

  22. Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).

    Article  Google Scholar 

  23. Rudel, T. K. et al. Forest transitions: towards a global understanding of land use change. Glob. Environ. Change 15, 23–31 (2005).

    Article  Google Scholar 

  24. Sánchezcuervo, A. M., Aide, T. M., Clark, M. L. & Etter, A. Land cover change in Colombia: surprising forest recovery trends between 2001 and 2010. PLoS ONE 7 e43943 (2012)..

  25. Magliocca, N. R. et al. Synthesis in land change science: methodological patterns, challenges, and guidelines. Reg. Environ. Change 15, 211–226 (2015).

    Article  Google Scholar 

  26. Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).

    Article  Google Scholar 

  27. Poorter, L. et al. Biomass resilience of neotropical secondary forests. Nature 530, 211 (2016).

    Article  Google Scholar 

  28. Global Forest Resources Assessment 2015: How are the world’s forests changing? (FAO, 2015);

  29. Le Quéré, C. et al. Global carbon budget 2014. Earth Syst. Sci. Data 7, 47–85 (2015).

    Article  Google Scholar 

  30. Hansis, E., Davis, S. J. & Pongratz, J. Relevance of methodological choices for accounting of land use change carbon fluxes. Glob. Biogeochem. Cycles 29, 1230–1246 (2015).

    Article  Google Scholar 

  31. Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).

    Article  Google Scholar 

  32. Erb, K. H. et al. Bias in the attribution of forest carbon sinks. Nat. Clim. Change 3, 854–856 (2013).

    Article  Google Scholar 

  33. Poeplau, C. et al. Temporal dynamics of soil organic carbon after land-use change in the temperate zone—carbon response functions as a model approach. Glob. Change Biol. 17, 2415–2427 (2011).

    Article  Google Scholar 

  34. Tucker, C. J. et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485–4498 (2005).

    Article  Google Scholar 

  35. Keeling, R. F., Piper, S. C., Bollenbacher, A. F. & Walker, J. S. in Trends: A Compendium of Data on Global Change (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, 2009);

  36. Klein Goldewijk, K., Beusen, A., Van Drecht, G. & De Vos, Martine The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).

    Article  Google Scholar 

  37. Goldewijk, K. A historical land use data set for the Holocene; HYDE 3.2. EGU General. Assem. Conf. Abstr. 18, 1574 (2016).

    Google Scholar 

  38. Peylin, P. et al. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10, 6699–6720 (2013).

    Article  Google Scholar 

  39. Chevallier, F. et al. CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements. J. Geophys. Res. 115, D21307 (2010).

    Article  Google Scholar 

  40. Rӧdenbeck, C. Estimating CO 2 Sources and Sinks from Atmospheric Mixing Ratio Measurements using a Global Inversion of Atmospheric Transport Tech. Rep. 6 (Max Planck Institute for Biogeochemistry, Jena, 2005);

  41. Thompson, R. L. et al. Top–down assessment of the Asian carbon budget since the mid 1990s. Nat. Commun. 7, 10724 (2016).

    Article  Google Scholar 

  42. Le Quéré, C. et al. Global carbon budget 2016. Earth Syst. Sci. Data 8, 605 (2016).

    Article  Google Scholar 

  43. Houghton, R. A. et al. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol. Monogr. 53, 235–262 (1983).

    Article  Google Scholar 

  44. Houghton, R. A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B 55, 378–390 (2003).

    Google Scholar 

  45. Wolf, J. et al. Biogenic carbon fluxes from global agricultural production and consumption. Glob. Biogeochem. Cycles 29, 1617–1639 (2015).

    Article  Google Scholar 

  46. Kyle, P. et al. GCAM 3.0 Agriculture and Land Use: Data Sources and Methods PNNL-21025 (Pacific Northwest National Laboratory, 2011);

  47. Ciais, P. et al. The impact of lateral carbon fluxes on the European carbon balance. Biogeosci. Discuss. 3, 1529–1559 (2006).

    Article  Google Scholar 

  48. Laruelle, G. G. et al. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol. Earth Syst. Sci. 17, 2029 (2013).

    Article  Google Scholar 

  49. Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607 (2013).

    Article  Google Scholar 

  50. Pongratz, J., Reick, C. H., Houghton, R. & House, J. Terminology as a key uncertainty in net land use and land cover change carbon flux estimates. Earth Syst. Dyn. 5, 177 (2014).

    Article  Google Scholar 

  51. Manly, B. F. J. Randomization, Bootstrap and Monte Carlo Methods in Biology (CRC Press, Boca Raton, 2006).

Download references


This study was supported by the Strategic Priority Research Program (A) of the Chinese Academy of Sciences (grant XDA20050101), the International Partnership Program of Chinese Academy of Sciences (grant 131C11KYSB20160061), the National Natural Science Foundation of China (41530528), and the 111 Project (B14001). We thank the TRENDY modelling group for providing the model simulation data.

Author information

Authors and Affiliations



S. Piao designed the study. M.H. and Z.L performed the analysis. S. Piao and Z.L drafted the paper. All authors contributed to the interpretation of the results and to the text.

Corresponding author

Correspondence to Shilong Piao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–7, Supplementary Figures 1–14 and Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Piao, S., Huang, M., Liu, Z. et al. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nature Geosci 11, 739–743 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing