The terrestrial carbon sink accelerated during 1998–2012, concurrently with the slow warming period, but the mechanisms behind this acceleration are unclear. Here we analyse recent changes in the net land carbon sink (NLS) and its driving factors, using atmospheric inversions and terrestrial carbon models. We show that the linear trend of NLS during 1998–2012 is about 0.17 ± 0.05 Pg C yr−2 , which is three times larger than during 1980–1998 (0.05 ± 0.05 Pg C yr−2). According to terrestrial carbon model simulations, the intensification of the NLS cannot be explained by CO2 fertilization or climate change alone. We therefore use a bookkeeping model to explore the contribution of changes in land-use emissions and find that decreasing land-use emissions are the dominant cause of the intensification of the NLS during the slow warming period. This reduction of land-use emissions is due to both decreased tropical forest area loss and increased afforestation in northern temperate regions. The estimate based on atmospheric inversions shows consistently reduced land-use emissions, whereas another bookkeeping model did not reproduce such changes, probably owing to missing the signal of reduced tropical deforestation. These results highlight the importance of better constraining emissions from land-use change to understand recent trends in land carbon sinks.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Easterling, D. R. & Wehner, M. F. Is the climate warming or cooling? Geophys. Res. Lett. 36, L08706 (2009).

  2. 2.

    Kaufmann, R. K., Kauppi, H., Mann, M. L. & Stock, J. H. Reconciling anthropogenic climate change with observed temperature 1998-2008. Proc. Natl. Acad. Sci. USA 108, 11790–11793 (2011).

  3. 3.

    Cohen, J. L., Furtado, J. C., Barlow, M. & Alexeev, V. A. Asymmetric seasonal temperature trends. Geophys. Res. Lett. 39, L04705 (2012).

  4. 4.

    Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).

  5. 5.

    Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).

  6. 6.

    Jong, R., Verbesselt, J., Schaepman, M. E. & Bruin, S. Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Glob. Change Biol. 18, 642–655 (2012).

  7. 7.

    Mohammat, A. et al. Drought and spring cooling induced recent decrease in vegetation growth in InnerAsia. Agric. For. Meteorol. 178, 21–30 (2013).

  8. 8.

    Kong, D., Zhang, Q., Singh, V. P. & Shi, P. Seasonal vegetation response to climate change in the Northern Hemisphere (1982–2013). Glob. Planet. Change 148, 1–8 (2017).

  9. 9.

    Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).

  10. 10.

    Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Change 7, 148–152 (2017).

  11. 11.

    Zhu, Z. et al. The accelerating land carbon uptake of the 2000s may not be driven predominantly by the warming hiatus. Geophys Res Lett. 45, 1402–1409 (2018).

  12. 12.

    Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850-2015. Glob. Biogeochem. Cycles 31, 456–472 (2017).

  13. 13.

    Le Quéré, C. et al. Global carbon budget 2013. Earth Syst. Sci. Data 6, 235–263 (2014).

  14. 14.

    Houghton, R. A. et al. Carbon emissions from land use and land-cover change. Biogeosciences 9, 5125–5142 (2012).

  15. 15.

    Le Quéré, C. et al. Global carbon budget 2015. Earth Syst. Sci. Data 7, 349–396 (2015).

  16. 16.

    Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.)192–194 (Cambridge Univ. Press, Cambridge, 2013).

  17. 17.

    Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Change 7, 148–152 (2017).

  18. 18.

    Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 7, 220–226 (2017).

  19. 19.

    De Kauwe, M. G. et al. Satellite based estimates underestimate the effect of CO2 fertilization on net primary productivity. Nat. Clim. Change 6, 892–893 (2016).

  20. 20.

    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

  21. 21.

    Giglio, L., Randerson, J. T. & van der Werf, G. R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 118, 317–328 (2013).

  22. 22.

    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).

  23. 23.

    Rudel, T. K. et al. Forest transitions: towards a global understanding of land use change. Glob. Environ. Change 15, 23–31 (2005).

  24. 24.

    Sánchezcuervo, A. M., Aide, T. M., Clark, M. L. & Etter, A. Land cover change in Colombia: surprising forest recovery trends between 2001 and 2010. PLoS ONE 7 e43943 (2012)..

  25. 25.

    Magliocca, N. R. et al. Synthesis in land change science: methodological patterns, challenges, and guidelines. Reg. Environ. Change 15, 211–226 (2015).

  26. 26.

    Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).

  27. 27.

    Poorter, L. et al. Biomass resilience of neotropical secondary forests. Nature 530, 211 (2016).

  28. 28.

    Global Forest Resources Assessment 2015: How are the world’s forests changing? (FAO, 2015);

  29. 29.

    Le Quéré, C. et al. Global carbon budget 2014. Earth Syst. Sci. Data 7, 47–85 (2015).

  30. 30.

    Hansis, E., Davis, S. J. & Pongratz, J. Relevance of methodological choices for accounting of land use change carbon fluxes. Glob. Biogeochem. Cycles 29, 1230–1246 (2015).

  31. 31.

    Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).

  32. 32.

    Erb, K. H. et al. Bias in the attribution of forest carbon sinks. Nat. Clim. Change 3, 854–856 (2013).

  33. 33.

    Poeplau, C. et al. Temporal dynamics of soil organic carbon after land-use change in the temperate zone—carbon response functions as a model approach. Glob. Change Biol. 17, 2415–2427 (2011).

  34. 34.

    Tucker, C. J. et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485–4498 (2005).

  35. 35.

    Keeling, R. F., Piper, S. C., Bollenbacher, A. F. & Walker, J. S. in Trends: A Compendium of Data on Global Change (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, 2009);

  36. 36.

    Klein Goldewijk, K., Beusen, A., Van Drecht, G. & De Vos, Martine The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).

  37. 37.

    Goldewijk, K. A historical land use data set for the Holocene; HYDE 3.2. EGU General. Assem. Conf. Abstr. 18, 1574 (2016).

  38. 38.

    Peylin, P. et al. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10, 6699–6720 (2013).

  39. 39.

    Chevallier, F. et al. CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements. J. Geophys. Res. 115, D21307 (2010).

  40. 40.

    Rӧdenbeck, C. Estimating CO 2 Sources and Sinks from Atmospheric Mixing Ratio Measurements using a Global Inversion of Atmospheric Transport Tech. Rep. 6 (Max Planck Institute for Biogeochemistry, Jena, 2005);

  41. 41.

    Thompson, R. L. et al. Top–down assessment of the Asian carbon budget since the mid 1990s. Nat. Commun. 7, 10724 (2016).

  42. 42.

    Le Quéré, C. et al. Global carbon budget 2016. Earth Syst. Sci. Data 8, 605 (2016).

  43. 43.

    Houghton, R. A. et al. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol. Monogr. 53, 235–262 (1983).

  44. 44.

    Houghton, R. A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B 55, 378–390 (2003).

  45. 45.

    Wolf, J. et al. Biogenic carbon fluxes from global agricultural production and consumption. Glob. Biogeochem. Cycles 29, 1617–1639 (2015).

  46. 46.

    Kyle, P. et al. GCAM 3.0 Agriculture and Land Use: Data Sources and Methods PNNL-21025 (Pacific Northwest National Laboratory, 2011);

  47. 47.

    Ciais, P. et al. The impact of lateral carbon fluxes on the European carbon balance. Biogeosci. Discuss. 3, 1529–1559 (2006).

  48. 48.

    Laruelle, G. G. et al. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol. Earth Syst. Sci. 17, 2029 (2013).

  49. 49.

    Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607 (2013).

  50. 50.

    Pongratz, J., Reick, C. H., Houghton, R. & House, J. Terminology as a key uncertainty in net land use and land cover change carbon flux estimates. Earth Syst. Dyn. 5, 177 (2014).

  51. 51.

    Manly, B. F. J. Randomization, Bootstrap and Monte Carlo Methods in Biology (CRC Press, Boca Raton, 2006).

Download references


This study was supported by the Strategic Priority Research Program (A) of the Chinese Academy of Sciences (grant XDA20050101), the International Partnership Program of Chinese Academy of Sciences (grant 131C11KYSB20160061), the National Natural Science Foundation of China (41530528), and the 111 Project (B14001). We thank the TRENDY modelling group for providing the model simulation data.

Author information


  1. Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

    • Shilong Piao
    • , Yongwen Liu
    •  & Tao Wang
  2. Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing, China

    • Shilong Piao
    • , Yongwen Liu
    •  & Tao Wang
  3. Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China

    • Shilong Piao
    • , Mengtian Huang
    • , Zhuo Liu
    • , Xuhui Wang
    • , Kai Wang
    • , Yongwen Liu
    • , Shushi Peng
    • , Tao Yan
    • , Zaichun Zhu
    •  & Donghai Wu
  4. Laboratoire des Sciences du Climat et de l’Environnement, CEA CNRS UVSQ, Gif-sur-Yvette, France

    • Xuhui Wang
    • , Philippe Ciais
    • , Ana Bastos
    •  & Yilong Wang
  5. Global Carbon Project, CSIRO Oceans and Atmosphere, Canberra, Australian Capital Territory, Australia

    • Josep G. Canadell
  6. College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK

    • Pierre Friedlingstein
  7. Woods Hole Research Center, Falmouth, MA, USA

    • Richard A. Houghton
  8. Tyndall Centre for Climate Change Research, University of East Anglia, Norwich Research Park, Norwich, UK

    • Corinne Le Quéré
  9. Department of Earth and Environment, Boston University, Boston, MA, USA

    • Ranga B. Myneni
  10. Max Planck Institute for Meteorology, Hamburg, Germany

    • Julia Pongratz
  11. Ludwig-Maximilians-Universität München, Department of Geography, Munich, Germany

    • Julia Pongratz
  12. College of Life and Environmental Sciences, University of Exeter, Exeter, UK

    • Stephen Sitch


  1. Search for Shilong Piao in:

  2. Search for Mengtian Huang in:

  3. Search for Zhuo Liu in:

  4. Search for Xuhui Wang in:

  5. Search for Philippe Ciais in:

  6. Search for Josep G. Canadell in:

  7. Search for Kai Wang in:

  8. Search for Ana Bastos in:

  9. Search for Pierre Friedlingstein in:

  10. Search for Richard A. Houghton in:

  11. Search for Corinne Le Quéré in:

  12. Search for Yongwen Liu in:

  13. Search for Ranga B. Myneni in:

  14. Search for Shushi Peng in:

  15. Search for Julia Pongratz in:

  16. Search for Stephen Sitch in:

  17. Search for Tao Yan in:

  18. Search for Yilong Wang in:

  19. Search for Zaichun Zhu in:

  20. Search for Donghai Wu in:

  21. Search for Tao Wang in:


S. Piao designed the study. M.H. and Z.L performed the analysis. S. Piao and Z.L drafted the paper. All authors contributed to the interpretation of the results and to the text.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Shilong Piao.

Supplementary information

  1. Supplementary Information

    Supplementary Tables 1–7, Supplementary Figures 1–14 and Supplementary References.

About this article

Publication history