Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cenozoic record of δ34S in foraminiferal calcite implies an early Eocene shift to deep-ocean sulfide burial


Understanding the changes in, and drivers of, isotopic variability of sulfur in seawater sulfate (δ34SSO4-sw) over geological time remains a long-standing goal, particularly because of the coupling between the biogeochemical sulfur and carbon cycles. The early Cenozoic has remained enigmatic in this regard, as the existing seawater sulfate isotopic records appear to be decoupled from the well-defined carbon isotope composition of the ocean. Here, we present a new Cenozoic record of sulfur isotopes, using carbonate-associated sulfate hosted in the calcite lattice of single-species foraminifera. The vastly improved stratigraphy afforded by this record demonstrates that carbon and sulfur cycles, as recorded by their isotopes, are not fully decoupled in the early Cenozoic. With a model driven by partial coupling of the carbon and sulfur cycles, we demonstrate that a change in sulfur isotopic fractionation of the pyrite burial flux best explains the large increase in δ34SSO4-sw ~53 million years ago (Ma) and the subsequent long steady state. We suggest that the locus of pyrite burial changed from shallow epicontinental seas and shelf environments to more open-ocean sediments around 53 Ma. Loss of extensive shelf environments corresponds to Cretaceous–Palaeogene sea-level changes and tectonic reorganization, occurring as the Himalayan arc first collided with Asia.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Cenozoic evolution of δ34SSO4-sw from foraminiferal CAS, compared with barite δ34S, benthic foraminiferal δ13C and δ18O, sea level and India–Tibet convergence.
Fig. 2: Model parameters and outputs for fully and partially coupled carbon–sulfur models, compared with δ34SSO4-sw data and carbon–sulfur cross-plots.


  1. 1.

    Berner, R. A. Models for carbon and sulfur cycles and atmospheric oxygen—application to paleozoic geologic history. Am. J. Sci. 287, 177–196 (1987).

    Article  Google Scholar 

  2. 2.

    Canfield, D. E. The evolution of the Earth surface sulfur reservoir. Am. J. Sci. 304, 839–861 (2004).

    Article  Google Scholar 

  3. 3.

    Berner, R. A. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70, 5653–5664 (2006).

    Article  Google Scholar 

  4. 4.

    Kurtz, A. C., Kump, L. R., Arthur, M. A., Zachos, J. C. & Paytan, A. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18, 1090 (2003).

  5. 5.

    Paytan, A., Kastner, M., Campbell, D. & Thiemens, M. H. Sulfur isotopic composition of Cenozoic seawater sulfate. Science 282, 1459–1462 (1998).

    Article  Google Scholar 

  6. 6.

    Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).

    Article  Google Scholar 

  7. 7.

    Paris, G., Sessions, A. L., Subhas, A. V. & Adkins, J. F. MC-ICP-MS measurement of δ34S and Δ33S in small amounts of dissolved sulfate. Chem. Geol. 345, 50–61 (2013).

    Article  Google Scholar 

  8. 8.

    Paris, G., Adkins, J. F., Sessions, A. L., Webb, S. M. & Fischer, W. W. Neoarchean carbonate-associated sulfate records positive Δ33S anomalies. Science 346, 739–741 (2014).

    Article  Google Scholar 

  9. 9.

    Paris, G., Fehrenbacher, J. S., Sessions, A. L., Spero, H. J. & Adkins, J. F. Experimental determination of carbonate-associated sulfate δ34S in planktonic foraminifera shells. Geochem. Geophys. Geosyst. 15, 1452–1461 (2014).

    Article  Google Scholar 

  10. 10.

    Wortmann, U. G. & Paytan, A. Rapid variability of seawater chemistry over the past 130 million years. Science 337, 334–336 (2012).

    Article  Google Scholar 

  11. 11.

    Schrag, D. P., Higgins, J. A., Macdonald, F. A. & Johnston, D. T. Authigenic carbonate and the history of the global carbon cycle. Science 339, 540–543 (2013).

    Article  Google Scholar 

  12. 12.

    Palike, H. et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488, 609–614 (2012).

    Article  Google Scholar 

  13. 13.

    Halevy, I., Peters, S. E. & Fischer, W. W. Sulfate burial constraints on the Phanerozoic sulfur cycle. Science 337, 331–334 (2012).

    Article  Google Scholar 

  14. 14.

    Canfield, D. E. Sulfur isotopes in coal constrain the evolution of the Phanerozoic sulfur cycle. Proc. Natl Acad. Sci. USA 110, 8443–8446 (2013).

    Article  Google Scholar 

  15. 15.

    Leavitt, W. D. et al. Multiple sulfur isotope signatures of sulfite and thiosulfate reduction by the model dissimilatory sulfate-reducer, Desulfovibrio alaskensis str. G20. Front. Microbiol. 5, 591 (2014).

    Article  Google Scholar 

  16. 16.

    Sim, M. S., Ono, S., Donovan, K., Templer, S. P. & Bosak, T. Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp. Geochim. Cosmochim. Acta 75, 4244–4259 (2011).

    Article  Google Scholar 

  17. 17.

    Fike, D. A., Bradley, A. S. & Rose, C. V. Rethinking the ancient sulfur cycle. Ann. Rev. Earth Planet Sci. 43, 593–622 (2015).

    Article  Google Scholar 

  18. 18.

    Leavitt, W. D., Halevy, I., Bradley, A. S. & Johnston, D. T. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record. Proc. Natl Acad. Sci. USA 110, 11244–11249 (2013).

    Article  Google Scholar 

  19. 19.

    Gao, J., Fike, D. A. & Aller, R. C. Enriched pyrite δ 34S signals in modern tropical deltaic muds B31A-0352 (AGU Fall Meeting, 2013).

  20. 20.

    Aller, R. C., Madrid, V., Chistoserdov, A., Aller, J. Y. & Heilbrun, C. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: implications for oceanic isotope cycles and the sedimentary record. Geochim. Cosmochim. Acta 74, 4671–4692 (2010).

    Article  Google Scholar 

  21. 21.

    Deusner, C. et al. Sulfur and oxygen isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane is dependent on methane concentration. Earth Planet. Sci. Lett. 399, 61–73 (2014).

    Article  Google Scholar 

  22. 22.

    Duan, W. M. & Chen, L. Pyrite genesis during early diagenesis in the Yellow Sea and the East China Sea. Sci. China, Ser. B, Chem. 23, 545–552 (1993).

    Google Scholar 

  23. 23.

    Pasquier, V. et al. Pyrite sulfur isotopes reveal glacial−interglacial environmental changes. Proc. Natl Acad. Sci. USA 114, 5941–5945 (2017).

    Article  Google Scholar 

  24. 24.

    Werne, J. P., Lyons, T. W., Hollander, D. J., Formolo, M. J. & Damste, J. S. S. Reduced sulfur in euxinic sediments of the Cariaco Basin: sulfur isotope constraints on organic sulfur formation. Chem. Geol. 195, 159–179 (2003).

    Article  Google Scholar 

  25. 25.

    Raven, M. R., Adkins, J. F., Werne, J. P., Lyons, T. W. & Sessions, A. L. Sulfur isotopic composition of individual organic compounds from Cariaco Basin sediments. Org. Geochem 80, 53–59 (2015).

    Article  Google Scholar 

  26. 26.

    Werne, J. P. et al. Investigating pathways of diagenetic organic matter sulfurization using compound-specific sulfur isotope analysis. Geochim. Cosmochim. Acta 72, 3489–3502 (2008).

    Article  Google Scholar 

  27. 27.

    Horita, J., Zimmermann, H. & Holland, H. D. Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporites. Geochim. Cosmochim. Acta 66, 3733–3756 (2002).

    Article  Google Scholar 

  28. 28.

    Renaudie, J. Quantifying the Cenozoic marine diatom deposition history: links to the C and Si cycles. Biogeosci. 13, 6003–6014 (2016).

    Article  Google Scholar 

  29. 29.

    Sexton, P. F. et al. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon. Nature 471, 349–352 (2011).

    Article  Google Scholar 

  30. 30.

    Reyment, R. Biogeography of the Saharan Cretaceous and Paleocene epicontinental transgressions. Cretaceous Res. 1, 299–327 (1980).

    Article  Google Scholar 

  31. 31.

    Akhmetiev, M. A. & Beniamovski, V. N. Paleocene and Eocene of Western Eurasia (Russian sector)- stratigraphy, palaeogeography, climate. Neues Jahrb. Geol. P.-A. 234, 137–181 (2004).

    Google Scholar 

  32. 32.

    Golonka, J. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 381, 235–273 (2004).

    Article  Google Scholar 

  33. 33.

    Schmitz, B., Pujalte, V. & Núñez-Betelu, K. Climate and sea-level perturbations during the Incipient Eocene Thermal Maximum: evidence from siliciclastic units in the Basque Basin (Ermua, Zumaia and Trabakua Pass), northern Spain. Palaeogeogr., Palaeoclimatol., Palaeoecol. 165, 299–320 (2001).

    Article  Google Scholar 

  34. 34.

    Gavrilov, Yu. O., Kodina, L. A., Lubochenko, I. Yu. & Muzylev, N. G. The late Paleocene anoxic event in epicontinental seas of Peri-Tethys and formation of the sapropelite unit: sedimentology and geochemistry. Lithol. Min. Resour. 32, 492–517 (1997).

  35. 35.

    Speijer, R. P. & Wagner, T. in Catastrophic Events and Mass Extinctions: Impacts and Beyond (eds Koeberl, C. & MacLeod K. G.) 533–549 (Geological Society of America Special Paper, Boulder, 2002).

  36. 36.

    Miller, K. G. et al. Cenozoic global sea level, sequences, and the New Jersey transect: results from coastal plain and continental slope drilling. Rev. Geophys. 36, 569–601 (1998).

    Article  Google Scholar 

  37. 37.

    Haq, B. U. & Al-Qahtani, A. M. Phanerozoic cycles of sea-level change on the Arabian Platform. Geoarabia 10, 127–160 (2005).

    Google Scholar 

  38. 38.

    Miller, K. G., Fairbanks, R. G. & Mountain, G. S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 2, 1–19 (1987).

    Article  Google Scholar 

  39. 39.

    Higgins, J. A. & Schrag, D. P. Beyond methane: towards a theory for the Paleocene-Eocene Thermal Maximum. Earth Planet. Sci. Lett. 245, 523–537 (2006).

    Article  Google Scholar 

  40. 40.

    Bouilhol, P., Jagoutz, O., Hanchar, J. M. & Dudas, F. O. Dating the India–Eurasia collision through arc magmatic records. Earth Planet. Sci. Lett. 366, 163–175 (2013).

    Article  Google Scholar 

  41. 41.

    Tamisiea, M. E. & Mitrovica, J. X. The moving boundaries of sea level change: understanding the origins of geographic variability. Oceanography 24, 24–39 (2011).

  42. 42.

    Raiswell, R. & Canfield, D. E. Sources of iron for pyrite formation in marine sediments. Am. J. Sci. 298, 219–245 (1998).

    Article  Google Scholar 

  43. 43.

    Raiswell, R. & Berner, R. A. Pyrite and organic matter in Phanerozoic normal marine shales. Geochim. Cosmochim. Acta 50, 1967–1976 (1986).

    Article  Google Scholar 

  44. 44.

    Komar, N., Zeebe, R. & Dickens, G. Understanding long-term carbon cycle trends: the late Paleocene through the early Eocene. Paleoceanography 28, 650–662 (2013).

    Article  Google Scholar 

  45. 45.

    Claypool, G. E. in Geochemical Investigations in Earth and Space Science: A Tribute to Isaac R. Kaplan Spec. Pub. 9 (eds Hill, R. J. et al.) 59–65 (Geochemical Society, Amsterdam, 2004).

  46. 46.

    Jagoutz, O., Royden, L., Holt, A. F. & Becker, T. W. Anomalously fast convergence of India and Eurasia caused by double subduction. Nat. Geosci. 8, 475–478 (2015).

    Article  Google Scholar 

  47. 47.

    Katz, M. E. et al. Biological overprint of the geological carbon cycle. Mar. Geol. 217, 323–338 (2005).

    Article  Google Scholar 

  48. 48.

    McCorkle, D. C., Corliss, B. H. & Farnham, C. A. Vertical distributions and stable isotopic compositions of live (stained) benthic foraminifera from the North Carolina and California continental margins. Deep-Sea Res. Pt I 44, 983–1024 (1997).

    Article  Google Scholar 

  49. 49.

    Cande, S. C. & Stegman, D. R. Indian and African plate motions driven by the push force of the Reunion plume head. Nature 475, 47–52 (2011).

    Article  Google Scholar 

  50. 50.

    Miller, K. G. et al. The Phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005).

    Article  Google Scholar 

Download references


We thank M. Vautravers for her expertise with Palaeogene foraminifera and S. Misra, G. Antler and W. Fisher for helpful discussions and advice. This work was supported by a ‘Small Sulfur’ NERC grant (NERC NE/H011595/1), the ERC (ERC StG 307582, CARBONSINK to A.V.T.) and a NERC studentship to V.C.F.R.

Author information




V.C.F.R. designed the cleaning tests, did the lab work and analysis for trace element analysis and sulfur isotopes, and wrote the model and the paper. G.P. advised on the cleaning tests, did sulfate and sulfur isotope preparation and analysis, was heavily involved in the modelling and wrote the paper. A.L.S. provided equipment and fruitful discussions. S.A. picked the foraminifera for the stable isotope analyses. A.V.T. provided extensive advice and funding at all stages, had the idea for the shift in 34εSO4-pyr and wrote the paper. J.F.A. provided guidance and lab equipment for lab work and analysis, advised extensively on the model and wrote the paper.

Corresponding author

Correspondence to Victoria C. F. Rennie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text.

Foram δ34S data

Foram δ34S data.

δ13C input data

δ13C input data.

Definitions uncoupled

MATLAB code.

Equations uncoupled

MATLAB code.

Solve uncoupled

MATLAB code.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rennie, V.C.F., Paris, G., Sessions, A.L. et al. Cenozoic record of δ34S in foraminiferal calcite implies an early Eocene shift to deep-ocean sulfide burial. Nature Geosci 11, 761–765 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing