Rapid transition from continental breakup to igneous oceanic crust in the South China Sea

Abstract

Continental breakup represents the successful process of rifting and thinning of the continental lithosphere, leading to plate rupture and initiation of oceanic crust formation. Magmatism during breakup seems to follow a path of either excessive, transient magmatism (magma-rich margins) or of igneous starvation (magma-poor margins). The latter type is characterized by extreme continental lithospheric extension and mantle exhumation prior to igneous oceanic crust formation. Discovery of magma-poor margins has raised fundamental questions about the onset of ocean-floor type magmatism, and has guided interpretation of seismic data across many rifted margins, including the highly extended northern South China Sea margin. Here we report International Ocean Discovery Program drilling data from the northern South China Sea margin, testing the magma-poor margin model outside the North Atlantic. Contrary to expectations, results show initiation of Mid-Ocean Ridge basalt type magmatism during breakup, with a narrow and rapid transition into igneous oceanic crust. Coring and seismic data suggest that fast lithospheric extension without mantle exhumation generated a margin structure between the two endmembers. Asthenospheric upwelling yielding Mid-Ocean Ridge basalt-type magmatism from normal-temperature mantle during final breakup is interpreted to reflect rapid rifting within thin pre-rift lithosphere.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Regional setting and key basement topography of study area.
Fig. 2: Interpreted seismic sections.
Fig. 3: Summary chart of drilling results.
Fig. 4: Geochemical discrimination diagram.
Fig. 5: Conceptual model of continental breakup based on integration of seismic and drilling data from Figs. 2 and 3.

References

  1. 1.

    Peron-Pinvidic, G., Manatschal, G. & Osmundsen, P. T. Structural comparison of archetypal Atlantic rifted margins: a review of observations and concepts. Mar. Pet. Geol. 43, 21–47 (2013).

    Article  Google Scholar 

  2. 2.

    Tugend, J. et al. Reappraisal of the Magma-Rich versus Magma-Poor Rifted Margin Archetypes Spec. Pub. SP476.9 (Geological Society of London, 2018); https://doi.org/10.1144/SP476.9

  3. 3.

    Franke, D. Rifting, lithosphere breakup and volcanism: comparison of magma-poor and volcanic rifted margins. Mar. Pet. Geol. 43, 63–87 (2013).

    Article  Google Scholar 

  4. 4.

    Gao, J. et al. The continent–ocean transition at the mid-northern margin of the South China Sea. Tectonophysics 654, 1–19 (2015).

    Article  Google Scholar 

  5. 5.

    Lester, R. et al. Rifting and magmatism in the northeastern South China Sea from wide-angle tomography and seismic reflection imaging. J. Geophys. Res. Solid Earth 119, 2305–2323 (2014).

    Article  Google Scholar 

  6. 6.

    Holbrook, W. S. et al. Mantle thermal structure and active upwelling during continental breakup in the North Atlantic. Earth Planet. Sci. Lett. 190, 251–266 (2001).

    Article  Google Scholar 

  7. 7.

    Larsen, H. C. & Saunders, A. D. Tectonism and volcanism at the southeast greenland rifted margin: a record of plume impact and later continental rupture. In Proc. ODP Sci. Res. (eds Saunders, A. D., Larsen, L. C. & Wise, S. W. Jr) Vol. 152, Ch. 41 (ODP, 1998); https://doi.org/10.2973/odp.proc.sr.152.240.1998

  8. 8.

    Boillot, G., Winterer, E. L. & Al, E. Drilling on the galicia margin: retrospect and prospect. In Proc. ODP Sci. Res. (eds Boillot, G., Winterer, E. L. & Meyer, A. W.) Vol. 103, Ch. 45 (ODP, 1988); https://doi.org/10.2973/odp.proc.sr.103.180.1988

  9. 9.

    Minshull, T. A. Geophysical characterisation of the ocean–continent transition at magma-poor rifted margins. Comptes Rendus Geosci. 341, 382–393 (2009).

    Article  Google Scholar 

  10. 10.

    Tucholke, B. & Sibuet, J.-C. Leg 210 synthesis: tectonic, magmatic, and sedimentary evolution of the newfoundland-iberia rift. In Proc. ODP Sci. Res. (eds Tucholke, B.E., Sibuet, J.-C. & Klaus, A) Vol. 210, Ch. 1 (ODP, 2007); https://doi.org/10.2973/odp.proc.sr.210.101.2007

  11. 11.

    Whitmarsh, R. B., Manatschal, G. & Minshull, T. A. Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature 413, 150–154 (2001).

    Article  Google Scholar 

  12. 12.

    Lizarralde, D. et al. Variation in styles of rifting in the Gulf of California. Nature 448, 466–469 (2007).

    Article  Google Scholar 

  13. 13.

    Ligi, M. et al. Birth of an ocean in the Red Sea: initial pangs. Geochem. Geophys. Geosyst. 13, Q08009 (2012).

    Article  Google Scholar 

  14. 14.

    Li, C.-F., Lin, J., Kulhanek, D. K. & Expedition 349 Scientists. Expedition 349 summary. In Proc. IODP (eds Li, C.-F., Lin, J., Kulhanek, D. K. & Expedition 349 Scientists) Vol. 349, Ch. 1 (IODP, 2015); https://doi.org/10.14379/iodp.proc.349.101.2015

  15. 15.

    Taylor, B. & Hayes, D. Origin and history of the South China Sea basin. Tecton. Geol. Evol. 27, 23–56 (1983).

    Google Scholar 

  16. 16.

    Sun, Z. et al. Expedition 367/368 Scientific Prospectus: South China Sea Rifted Margin 39–106 (IODP, 2016); https://doi.org/10.14379/iodp.sp.367368.2016

  17. 17.

    Zhou, D., Ru, K. & Chen, H. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region. Tectonophysics 251, 161–177 (1995).

    Article  Google Scholar 

  18. 18.

    Ru, K. & Pigott, J. D. Episodic rifting and subsidence in the South China Sea. Am. Assoc. Pet. Geol. Bull. 70, 1136–1155 (1986).

    Google Scholar 

  19. 19.

    Franke et al. The final rifting evolution in the South China Sea. Mar. Pet. Geol. 58, 704–720 (2014).

    Article  Google Scholar 

  20. 20.

    Franke, D. et al. The continent-ocean transition at the southeastern margin of the South China Sea. Mar. Pet. Geol. 28, 1187–1204 (2011).

    Article  Google Scholar 

  21. 21.

    Fan, C. et al. New insights into the magmatism in the northern margin of the South China Sea: spatial features and volume of intraplate seamounts. Geochem. Geophys. Geosyst. 18, 2216–2239 (2017).

    Article  Google Scholar 

  22. 22.

    Zhao, F. et al. Prolonged post-rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea). Earth Planet. Sci. Lett. 445, 79–91 (2016).

    Article  Google Scholar 

  23. 23.

    Brune, S., Heine, C., Clift, P. D. & Pérez-Gussinyé, M. Rifted margin architecture and crustal rheology: reviewing Iberia–Newfoundland, Central South Atlantic, and South China Sea. Mar. Pet. Geol. 79, 257–281 (2017).

    Article  Google Scholar 

  24. 24.

    Clift, P., Lin, J. & Barckhausen, U. Evidence of low flexural rigidity and low viscosity lower continental crust during continental break-up in the South China Sea. Mar. Pet. Geol. 19, 951–970 (2002).

    Article  Google Scholar 

  25. 25.

    Clift, P. D., Brune, S. & Quinteros, J. Climate changes control offshore crustal structure at South China Sea continental margin. Earth Planet. Sci. Lett. 420, 66–72 (2015).

    Article  Google Scholar 

  26. 26.

    Briais, A., Patriat, P. & Tapponnier, P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: implications for the Tertiary tectonics of Southeast Asia. J. Geophys. Res. 98, 6299 (1993).

    Article  Google Scholar 

  27. 27.

    Li, C.-F. et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochem. Geophys. Geosyst. 15, 4958–4983 (2014).

    Article  Google Scholar 

  28. 28.

    Pin, Y., Di, Z. & Zhaoshu, L. A crustal structure pro file across the northern continental margin of the South China Sea. Tectonophysics 338, 1–21 (2001).

    Article  Google Scholar 

  29. 29.

    Larsen, H. C. et al. Site U1501. In Proc. IODP (eds Sun, Z. et al.) Vol. 367/368, Ch. 5 (IODP, 2018); https://doi.org/10.14379/iodp.proc.367368.105.2018

  30. 30.

    Pinglu, L. & Chuntao, R. Tectonic characteristics and evolution history of the Pearl river mouth basin. Tectonophysics 235, 13–25 (1994).

    Article  Google Scholar 

  31. 31.

    Li, C.-F., Lin, J., Kulhanek, D. K. & Expedition 349 Scientists. Site U1435. In Proc. IODP (eds Li, C.-F., Lin, J., Kulhanek, D. K. & Expedition 349 Scientists) Vol. 349, Ch. 7 (IODP, 2015); https://doi.org/10.14379/iodp.proc.349.107.2015

  32. 32.

    Sun, Z. et al. Site U1499. In Proc. IODP (eds Sun, Z. et al.) Vol. 367/368, Ch. 3 (IODP, 2018); https://doi.org/10.14379/iodp.proc.367368.103.2018

  33. 33.

    Larsen, H. C. et al. Site U1502. In Proc. IODP (eds Sun, Z. et al.) Vol. 367/368, Ch. 6 (IODP, 2018); https://doi.org/10.14379/iodp.proc.367368.106.2018

  34. 34.

    Stock, J. M. et al. Site U1500. In Proc. IODP (eds Sun, Z. et al.) Vol. 367/368, Ch. 4 (IODP, 2018); https://doi.org/10.14379/iodp.proc.367368.104.2018

  35. 35.

    Minshull, T. A., Dean, S. M., White, R. S. & Whitmarsh, R. B. Anomalous melt production after continental break-up in the southern Iberia Abyssal Plain. Geol. Soc. Lond., Spec. Publ. 187, 537–550 (2001).

    Article  Google Scholar 

  36. 36.

    Mohn, G., Karner, G. D., Manatschal, G. & Johnson, C. A. Structural and stratigraphic evolution of the Iberia–Newfoundland hyper-extended rifted margin: a quantitative modelling approach. Geol. Soc. Lond. Spec. Pub. 413, 53–89 (2015).

    Article  Google Scholar 

  37. 37.

    White, R. & McKenzie, D. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res. 94, 7685 (1989).

    Article  Google Scholar 

  38. 38.

    Fletcher, R., Kusznir, N. & Cheadle, M. Melt initiation and mantle exhumation at the Iberian rifted margin: comparison of pure-shear and upwelling-divergent flow models of continental breakup. Comptes Rendus Geosci. 341, 394–405 (2009).

    Article  Google Scholar 

  39. 39.

    Mckenzie, D. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988).

    Article  Google Scholar 

  40. 40.

    Bown, J. W. & White, R. S. Effect of finite extension rate on melt generation at rifted continental margins. J. Geophys. Res. Solid Earth 100, 18011–18029 (1995).

    Article  Google Scholar 

  41. 41.

    Lizarralde, D., Gaherty, J. B., Collins, J. A., Hirth, G. & Kim, S. D. Spreading-rate dependence of melt extraction at mid-ocean ridges from mantle seismic refraction data. Nature 432, 744–747 (2004).

    Article  Google Scholar 

  42. 42.

    Yu, C. et al. Deep thermal structure of Southeast Asia constrained by S-velocity data. Mar. Geophys. Res. 38, 341–355 (2017).

    Article  Google Scholar 

  43. 43.

    Sotin, C. & Parmentier, E. M. Dynamical consequences of compositional and thermal density stratification beneath spreading centers. Geophys. Res. Lett. 16, 835–838 (1989).

    Article  Google Scholar 

  44. 44.

    McKenzie, D. P. The generation and compaction of partial melts. J. Petrol. 25, 713–765 (1984).

    Article  Google Scholar 

  45. 45.

    Ohuchi, T. et al. Dislocation-accommodated grain boundary sliding as the major deformation mechanism of olivine in the Earth’s upper mantle. Sci. Adv. 1, e1500360 (2015).

    Article  Google Scholar 

  46. 46.

    Huismans, R. & Beaumont, C. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature 473, 74–78 (2011).

    Article  Google Scholar 

  47. 47.

    Nissen, S. S. et al. Gravity, heat flow, and seismic constraints on the processes of crustal extension: northern margin of the South China Sea. J. Geophys. Res. 100, 22447 (1995).

    Article  Google Scholar 

  48. 48.

    Gradstein, F. M. & Ogg, J. G. in The Geologic Time Scale (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.) Ch. 2, 31–42 (Elsevier, Amsterdam, 2012).

  49. 49.

    Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis NOAA Tech. Memo NESDIS NGDC-24 (National Geophysical Data Center, NOAA, 2009); https://doi.org/10.1594/PANGAEA.769615

  50. 50.

    Wang, P., Prell, W. L. & Blum, P. (eds) in Proc. ODP, Init. Repts Vol. 184, Ch. 1 (ODP, 2000).

  51. 51.

    Larsen, H. C. et al. Expedition 367/368 summary. In Proc. IODP (eds Sun, Z. et al.) Vol. 367/368, Ch. 1 (IODP, 2018); https://doi.org/10.14379/iodp.proc.367368.101.2018

  52. 52.

    Seton, M. et al. Community infrastructure and repository for marine magnetic identifications. Geochem. Geophys. Geosyst. 15, 1629–1641 (2014).

    Article  Google Scholar 

  53. 53.

    Gee, J. S. & Kent, D. V. Source of oceanic magnetic anomalies and the geomagnetic polarity timescale. Treatise Geophys. 5, 455–507 (2007).

    Article  Google Scholar 

  54. 54.

    Ishihara, T. & Kisimoto, K. Magnetic Anomaly Map of East Asia 1:4.000.000, CD-ROM (Geological survey of Japan, 1996).

  55. 55.

    Dai, Y. et al. Threshold conditions and reservoir-controlling characteristics of source kitchen in Zhu I depression, Pearl River Mouth Basin. Acta Pet. Sin. 36, 145–155 (2015).

    Google Scholar 

  56. 56.

    Shi, H., He, M. & Zhang, L. Hydrocarbon geology, accumulation pattern and the next exploration strategy in the eastern Pearl River Mouth basin. China Offshore Oil Gas. 26, 11–22 (2014).

    Google Scholar 

  57. 57.

    Shervais, J. W. Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett. 59, 101–118 (1982).

    Article  Google Scholar 

  58. 58.

    Sun, Z. et al. Methods. In Proc IODP (eds Sun, Z. et al.) Vol. 367/368, Ch. 2 (IODP, 2018); https://doi.org/10.14379/iodp.proc.367368.102.2018

Download references

Acknowledgements

The authors acknowledge the Chinese National Offshore Oil and Gas Company (CNOOC) for providing access for Z.S. and H.C.L. to work on their large regional database of seismic reflection data, which CNOOC subsequently amended with acquisition of new data to document our selected drill sites. The authors thank the RV JOIDES Resolution crew and the IODP technical staff. The IODP–China office supported international workshops to develop the original drilling proposal. Co-principal investigators of the drilling proposal, P. Wang and C.-F. Li, are acknowledged for their contributions to planning. This research used data and samples provided by the International Ocean Discovery Program. A.K. and C.A.-Z. acknowledge support from NSF award no. OCE-1326927. D.Z. was supported by the Korean IODP program (KIODP).

Author information

Affiliations

Authors

Contributions

H.C.L. was co-principal investigator (co-PI) for the original drilling proposal and interpretation of seismic data, co-chief scientist of expeditions 367/368, and directed the writing of the paper. G.M. is principal co-author, developed the geodynamic model jointly with H.C.L. and M.N. and was a shipboard scientist (structural geology) at expedition 368. M.N. was a shipboard scientist (structure/sedimentology) at expedition 367, carried out structural interpretation of syn-rift sedimentation, and contributed to model development and graphics. Z.S was co-PI for the original drilling proposal, interpretation of seismic data, and was co-chief scientist of expeditions 367/368. J.S. was co-chief scientist of expeditions 367/368 and co-proponent of the original drilling proposal. Z.J. was co-chief scientist of expeditions 367/368 and coordinated biostratigraphic interpretations. A.K. was expeditions 367/368 project manager. C.A.A.-Z. was expeditions 367/368 project manager and performed biostratigraphy. J.B., A.B., Y.C., M.D., A.F., J.H., T.W.H., K.H., B.H., X.H., B.J., C.Lei., L.L., Z.L., A.L., C.Lupi, A.McC., M.N., C.R., I.S., C.S., X.S., R.X., R.Y., L.Y., C.Z., J.Z., Y.Z., N.Z. and L.Z. collected the drilling data during IODP expedition 367 and participated in the writing of the paper. S.B., D.C., K.D., W.D., E.F., F.F., A.G., E.H., S.J., H.J., R.K., B.L., Y.L., J.L. (co-PI)., Chang Liu, Chuanlian Liu, L.N., N.O., D.W.P., P.P., N.Q., S.Sa., J.C.S., S.St., L.T., F.M.vdZ., S.W., H.W., P.S.Y. and G.Z. collected the drilling data during IODP expedition 368 and participated in writing of the paper. Roles on board are detailed in https://iodp.tamu.edu/scienceops/precruise/southchinasea2/participants.html.

Corresponding authors

Correspondence to H. C. Larsen or G. Mohn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Larsen, H.C., Mohn, G., Nirrengarten, M. et al. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geosci 11, 782–789 (2018). https://doi.org/10.1038/s41561-018-0198-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing