Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lack of evidence for a substantial sea-level fluctuation within the Last Interglacial

Abstract

During the Last Interglacial, global mean sea level reached approximately 6 to 9 m above the present level. This period of high sea level may have been punctuated by a fall of more than 4 m, but a cause for such a widespread sea-level fall has been elusive. Reconstructions of global mean sea level account for solid Earth processes and so the rapid growth and decay of ice sheets is the most obvious explanation for the sea-level fluctuation. Here, we synthesize published geomorphological and stratigraphic indicators from the Last Interglacial, and find no evidence for ice-sheet regrowth within the warm interglacial climate. We also identify uncertainties in the interpretation of local relative sea-level data that underpin the reconstructions of global mean sea level. Given this uncertainty, and taking into account our inability to identify any plausible processes that would cause global sea level to fall by 4 m during warm climate conditions, we question the occurrence of a rapid sea-level fluctuation within the Last Interglacial. We therefore recommend caution in interpreting the high rates of global mean sea-level rise in excess of 3 to 7 m per 1,000 years that have been proposed for the period following the Last Interglacial sea-level lowstand.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Probabilistic reconstruction of GMSL by Kopp et al.4 during the LIG.
Fig. 2: Selected records indicating climate changes and/or ice-sheet changes during the LIG.
Fig. 3: Theoretical mechanisms of ice-sheet growth and inception.

References

  1. Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019 (2015).

    Google Scholar 

  2. Long, A. J. et al. Near-field sea-level variability in northwest Europe and ice sheet stability during the last interglacial. Quat. Sci. Rev. 126, 26–40 (2015).

    Google Scholar 

  3. Lambeck, K., Purcell, A. & Dutton, A. The anatomy of interglacial sea levels: the relationship between sea levels and ice volumes during the Last Interglacial. Earth Planet. Sci. Lett. 315, 4–11 (2012).

    Google Scholar 

  4. Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C. & Oppenheimer, M. Probabilistic assessment of sea level during the last interglacial stage. Nature 462, 863–867 (2009).

    Google Scholar 

  5. Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C. & Oppenheimer, M. A probabilistic assessment of sea level variations within the last interglacial stage. Geophys. J. Int. 193, 711–716 (2013).

    Google Scholar 

  6. Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. USA 111, 15296–15303 (2014).

    Google Scholar 

  7. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, Cambridge, 2013).

  8. Rohlin, E. J. et al. High rates of sea-level rise during the last interglacial period. Nat. Geosci. 1, 38–42 (2008).

    Google Scholar 

  9. Lowe, J. A. et al. UK Climate Projections Science Report: Marine and Coastal Projections (UK Climate Projections, 2009).

  10. Dutton, A. & Lambeck, K. Ice volume and sea level during the Last Interglacial. Science 337, 216–219 (2012).

    Google Scholar 

  11. Düsterhus, A., Tamisiea, M. E. & Jevrejeva, S. Estimating the sea level highstand during the Last Interglacial: a probabilistic massive ensemble approach. Geophys. J. Int. 206, 900–920 (2016).

    Google Scholar 

  12. Mitrovica, J. X. & Peltier, W. R. On postglacial geoid subsidence over the equatorial oceans. J. Geophys. Res. 96, 20053–20071 (1991).

    Google Scholar 

  13. O’Leary, M. J. et al. Ice sheet collapse following a prolonged period of stable sea level during the last interglacial. Nat. Geosci. 6, 796–800 (2013).

    Google Scholar 

  14. Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  15. Shackleton, N. J. Oxygen isotopes, ice volume and sea level. Quat. Sci. Rev. 6, 183–190 (1987).

    Google Scholar 

  16. Dendy, S., Austermann, J., Creveling, J. R. & Mitrovica, J. X. Sensitivity of Last Interglacial sea-level high stands to ice sheet configuration during Marine Isotope Stage 6. Quat. Sci. Rev. 171, 234–244 (2017).

    Google Scholar 

  17. Rohling, E. J. Differences between the last two glacial maxima and implications for ice-sheet, δ18O, and sea-level reconstructions. Quat. Sci. Rev. 176, 1–28 (2017).

    Google Scholar 

  18. Austermann, J., Mitrovica, J. X., Huybers, P. & Rovere, A. Detection of a dynamic topography signal in last interglacial sea-level records. Sci. Adv. 3, e1700457.

  19. Moucha, R. et al. Dynamic topography and long-term sea-level variations: there is no such thing as a stable continental platform. Earth Planet. Sci. Lett. 271, 101–108 (2008).

    Google Scholar 

  20. Past Interglacials Working Group of PAGES. Interglacials of the last 800,000 years. Rev. Geophys. 54, 162–219 (2016).

    Google Scholar 

  21. Flint, R. F. Growth of North American ice sheet during the Wisconsin age. Geol. Soc. Am. Bull. 54, 325–362 (1943).

    Google Scholar 

  22. Payne, A. & Sugden, D. Topography and ice sheet growth. Earth Surf. Process. Landf. 15, 625–639 (1990).

    Google Scholar 

  23. Williams, L. D. Ice-sheet initiation and climatic influences of expanded snow cover in Arctic Canada. Quat. Res. 10, 141–149 (1978).

    Google Scholar 

  24. Williams, L. D. An energy balance model of potential glacierization of northern Canada. Arct. Antarct. Alp. Res. 11, 443–456 (1979).

    Google Scholar 

  25. Bromwich, D. H., Toracinta, E. R. & Wang, S.-H. Meteorological perspective on the initiation of the Laurentide Ice Sheet. Quat. Int. 95, 113–124 (2002).

    Google Scholar 

  26. Hughes, T. J. The marine ice transgression hypothesis. Geografiska Annaler A 69, 237–250 (1987).

    Google Scholar 

  27. Gomez, N., Mitrovica, J. X., Huybers, P. & Clark, P. U. Sea level as a stabilizing factor for marine-ice-sheet grounding lines. Nat. Geosci. 3, 850–853 (2010).

    Google Scholar 

  28. van der Wal, W., Whitehouse, P. L. & Schrama, E. J. Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica. Earth Planet. Sci. Lett. 414, 134–143 (2015).

    Google Scholar 

  29. Matsuoka, K. et al. Antarctic ice rises and rumples: their properties and significance for ice-sheet dynamics and evolution. Earth Sci. Rev. 150, 724–745 (2015).

    Google Scholar 

  30. Favier, L. & Pattyn, F. Antarctic ice rise formation, evolution, and stability. Geophys. Res. Lett. 42, 4456–4463 (2015).

    Google Scholar 

  31. Kingslake, J. et al. Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene. Nature 558, 430–434 (2018).

    Google Scholar 

  32. Funder, S., Kjeldsen, K. K., Kjær, K. H. & Cofaigh, C. The Greenland Ice Sheet during the past 300,000 years: a review. Dev. Quat. Sci. 15, 699–713 (2011).

    Google Scholar 

  33. Calov, R., Robinson, A., Perrette, M. & Ganopolski, A. Simulating the Greenland ice sheet under present-day and palaeo constraints including a new discharge parameterization. Cryosphere 9, 179–196 (2015).

    Google Scholar 

  34. Robinson, A., Calov, R. & Ganopolski, A. Greenland ice sheet model parameters constrained using simulations of the Eemian Interglacial. Clim. Past. 7, 381–396 (2011).

    Google Scholar 

  35. Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H. & Hu, A. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311, 1751–1753 (2006).

    Google Scholar 

  36. Helsen, M. et al. Coupled regional climate-ice-sheet simulation shows limited Greenland ice loss during the Eemian. Clim. Past. 9, 1773–1788 (2013).

    Google Scholar 

  37. van de Berg, W. J., van den Broeke, M., Ettema, J., van Meijgaard, E. & Kaspar, F. Significant contribution of insolation to Eemian melting of the Greenland ice sheet. Nat. Geosci. 4, 679–683 (2011).

    Google Scholar 

  38. MacGregor, J. A. et al. Radiostratigraphy and age structure of the Greenland Ice Sheet. J. Geophys. Res. 120, 212–241 (2015).

    Google Scholar 

  39. de Vernal, A. & Hillaire-Marcel, C. Natural variability of Greenland climate, vegetation, and ice volume during the past million years. Science 320, 1622–1625 (2008).

    Google Scholar 

  40. Carlson, A. E., Stoner, J. S., Donnelly, J. P. & Hillaire-Marcel, C. Response of the southern Greenland Ice Sheet during the last two deglaciations. Geology 36, 359–362 (2008).

    Google Scholar 

  41. Carlson, A. E. & Winsor, K. Northern Hemisphere ice-sheet responses to past climate warming. Nat. Geosci. 5, 607–613 (2012).

    Google Scholar 

  42. Colvill, E. J. et al. Sr-Nd-Pb isotope evidence for ice-sheet presence on southern Greenland during the Last Interglacial. Science 333, 620–623 (2011).

    Google Scholar 

  43. Reye, A. V. et al. South Greenland ice-sheet collapse during Marine Isotope Stage 11. Nature 510, 525–528 (2014).

    Google Scholar 

  44. Galaasen, E. V. et al. Rapid reductions in North Atlantic Deep Water during the peak of the last interglacial period. Science 343, 1129–1132 (2014).

    Google Scholar 

  45. Steig, E. J. et al. Influence of West Antarctic Ice Sheet collapse on Antarctic surface climate. Geophys. Res. Lett. 42, 4862–4868 (2015).

    Google Scholar 

  46. Hein, A. S. Evidence for the stability of the West Antarctic Ice Sheet divide for 1.4 million years. Nat. Commun. 7, 10325 (2016).

    Google Scholar 

  47. EPICA community members. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628 (2004).

    Google Scholar 

  48. Vaughan, D. G., Barnes, D. K., Fretwell, P. T. & Bingham, R. G. Potential seaways across west Antarctica. Geochem. Geophys. Geosyst. 12, Q10004 (2011).

    Google Scholar 

  49. McKay, R. et al. Pleistocene variability of Antarctic ice sheet extent in the Ross embayment. Quat. Sci. Rev. 34, 93–112 (2012).

    Google Scholar 

  50. Cofaigh, C. O., Dowdeswell, J. A. & Pudsey, C. J. Late Quaternary iceberg rafting along the Antarctic Peninsula continental rise and in the Weddell and Scotia seas. Quat. Res. 56, 308–321 (2001).

    Google Scholar 

  51. Hillenbrand, C.-D., Fütterer, D. K., Grobe, H. & Frederichs, T. No evidence for a Pleistocene collapse of the West Antarctic Ice Sheet from continental margin sediments recovered in the Amundsen Sea. Geo. Mar. Lett. 22, 51–59 (2002).

    Google Scholar 

  52. Hillenbrand, C. D., Kuhn, G. & Frederichs, T. Record of a Mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: an indicator for ice-sheet collapse? Quat. Sci. Rev. 28, 1147–1159 (2009).

    Google Scholar 

  53. Ackert, R. P. Jr et al. West Antarctic Ice Sheet elevations in the Ohio Range: geologic constraints and ice sheet modeling prior to the last highstand. Earth Planet. Sci. Lett. 307, 83–93 (2011).

    Google Scholar 

  54. Higgins, S., Denton, G. H. & Hendy, C. H. Glacial geomorphology of Bonney drift, Taylor Valley, Antarctica. Geografiska Annaler A 82, 365–389 (2000).

    Google Scholar 

  55. Steig, E. J. et al. Wisconsinan and Holocene climate history from an ice core at Taylor Dome, Western Ross Embayment, Antarctica. Geogr. Ann.: Ser. A. Phys. Geogr. 82, 213–235 (2000).

    Google Scholar 

  56. Hodgso, D. A. et al. Interglacial environments of coastal east Antarctica: comparison of MIS 1 (Holocene) and MIS 5e (Last Interglacial) lake-sediment records. Quat. Sci. Rev. 25, 179–197 (2006).

    Google Scholar 

  57. Bradley, S., Siddall, M., Milne, G., Masson-Delmotte, V. & Wolff, E. Where might we find evidence of a Last Interglacial West Antarctic Ice Sheet collapse in Antarctic ice core records? Glob. Planet. Change 88, 64–75 (2012).

    Google Scholar 

  58. Mengel, M. & Levermann, A. Ice plug prevents irreversible discharge from East Antarctica. Nat. Clim. Change 4, 451–455 (2014).

    Google Scholar 

  59. Pollard, D., DeConto, R. M. & Alley, R. B. Potential Antarctic ice sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett. 412, 112–121 (2015).

    Google Scholar 

  60. DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    Google Scholar 

  61. Sutter, J., Gierz, P., Grosfeld, K., Thoma, M. & Lohmann, G. Ocean temperature thresholds for Last Interglacial West Antarctic Ice Sheet collapse. Geophys. Res. Lett. 43, 2675–2682 (2016).

    Google Scholar 

  62. Capron, E. et al. Temporal and spatial structure of multi-millennial temperature changes at high latitudes during the Last Interglacial. Quat. Sci. Rev. 103, 116–133 (2014).

    Google Scholar 

  63. Ligtenberg, S. R. M., van de Berg, W. J., van den Broeke, M. R., Rae, J. G. L. & van Meijgaard, E. Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Clim. Dynam. 41, 867–884 (2013).

    Google Scholar 

  64. Lenaerts, J. T. M., Vizcaino, M., Fyke, J., van Kampenhout, L. & van den Broeke, M. R. Present-day and future Antarctic ice sheet climate and surface mass balance in the community Earth system model. Clim. Dynam. 47, 1367–1381 (2016).

    Google Scholar 

  65. Kleman, J. et al. North American Ice Sheet build-up during the last glacial cycle, 115–21 kyr. Quat. Sci. Rev. 29, 2036–2051 (2010).

    Google Scholar 

  66. Stokes, C. R., Tarasov, L. & Dyke, A. S. Dynamics of the North American Ice Sheet Complex during its inception and build-up to the Last Glacial Maximum. Quat. Sci. Rev. 50, 86–104 (2012).

    Google Scholar 

  67. Nicholl, J. A. L. A Laurentide outburst flooding event during the last interglacial period. Nat. Geosci. 5, 901–904 (2012).

    Google Scholar 

  68. Allard, G. et al. Constraining the age of the last interglacial–glacial transition in the Hudson Bay lowlands (Canada) using U–Th dating of buried wood. Quat. Geochron. 7, 37–47 (2012).

    Google Scholar 

  69. Spielhagen, R. F. et al. Arctic Ocean deep-sea record of northern Eurasian ice sheet history. Quat. Sci. Rev. 23, 1455–1483 (2004).

    Google Scholar 

  70. Svendsen, J. I. et al. Late Quaternary ice sheet history of northern Eurasia. Quat. Sci. Rev. 23, 1229–1271 (2004).

    Google Scholar 

  71. Lundqvist, J. Glacial history of Sweden. Dev. Quat. Sci. 2, 401–412 (2004).

    Google Scholar 

  72. Mangerud, J. Ice sheet limits in Norway and on the Norwegian continental shelf. Dev. Quat. Sci. 2, 271–294 (2004).

    Google Scholar 

  73. Möller, P., Alexanderson, H., Funder, S. & Hjort, C. The Taimyr Peninsula and the Severnaya Zemlya archipelago, Arctic Russia: a synthesis of glacial history and palaeo-environmental change during the Last Glacial cycle (MIS 5e–2). Quat. Sci. Rev. 107, 149–181 (2015).

    Google Scholar 

  74. Mangerud, J., Jansen, E. & Landvik, J. Y. Late Cenozoic history of the Scandinavian and Barents Sea ice sheets. Glob. Planet. Change 12, 11–26 (1996).

    Google Scholar 

  75. Sutherland, R., Kim, K., Zondervan, A. & McSaveney, M. Orbital forcing of mid-latitude Southern Hemisphere glaciation since 100 ka inferred from cosmogenic nuclide ages of moraine boulders from the Cascade Plateau, southwest New Zealand. Geo. Soc. Am. Bull. 119, 443–451 (2007).

    Google Scholar 

  76. Glasser, N. F. et al. Cosmogenic nuclide exposure ages for moraines in the Lago San Martin Valley, Argentina. Quat. Res. 75, 636–646 (2011).

    Google Scholar 

  77. Briner, J. P. & Kaufman, D. S. Late Pleistocene mountain glaciation in Alaska: key chronologies. J. Quat. Sci. 23, 659–670 (2008).

    Google Scholar 

  78. Phillips, L. Vegetational history of the Ipswichian/Eemian interglacial in Britain and continental Europe. New Phytol. 73, 589–604 (1974).

    Google Scholar 

  79. Goelzer, H., Huybrechts, P., Loutre, M. F. & Fichefet, T. Last Interglacial climate and sea-level evolution from a coupled ice sheet–climate model. Clim. Past. 12, 2195–2213 (2016).

    Google Scholar 

  80. McKay, N. P., Overpeck, J. T. & Otto‐Bliesner, B. L. The role of ocean thermal expansion in Last Interglacial sea level rise. Geophys. Res. Lett. 38, L14605 (2011).

    Google Scholar 

  81. Meehl, G. A. & Stocker, T. F. Global Climate Projections (Cambridge Univ. Press, New York, 2007).

    Google Scholar 

  82. Bauch, H. A. et al. Climatic bisection of the last interglacial warm period in the Polar North Atlantic. Quat. Sci. Rev. 30, 1813–1818 (2011).

    Google Scholar 

  83. van de Plassche, O. Sea-Level Research: A Manual for the Collection and Evaluation of Data (GeoBooks, Norwich, 1986).

    Google Scholar 

  84. Rovere, A. et al. The analysis of Last Interglacial (MIS 5e) relative sea-level indicators: reconstructing sea-level in a warmer world. Earth Sci. Rev. 159, 404–427 (2016).

    Google Scholar 

  85. Grant, K. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).

    Google Scholar 

  86. Thompson, W. G., Curran, H. A., Wilson, M. A. & White, B. Sea-level oscillations during the last interglacial highstand recorded by Bahamas corals. Nat. Geosci. 4, 684–687 (2011).

    Google Scholar 

  87. Dutton, A. et al. Tropical tales of polar ice: evidence of last interglacial polar ice sheet retreat recorded by fossil reefs of the granitic Seychelles islands. Quat. Sci. Rev. 107, 182–196 (2015).

    Google Scholar 

  88. Hearty, P. J., Hollin, J. T., Neumann, A. C., O’Leary, M. J. & McCulloch, M. Global sea-level fluctuations during the Last Interglaciation (MIS 5e). Quat. Sci. Rev. 26, 2090–2112 (2007).

    Google Scholar 

  89. White, B., Curran, H. A. & Wilson, M. A. Bahamian coral reefs yield evidence of a brief sea-level lowstand during the last interglacial. Carbonate Evaporite 13, 10 (1998).

    Google Scholar 

  90. Hibbert, F. D. et al. Coral indicators of past sea-level change: a global repository of U-series dated benchmarks. Quat. Sci. Rev. 145, 1–56 (2016).

    Google Scholar 

  91. Chen, J. H., Curran, H. A., White, B. & Wasserburg, G. J. Precise chronology of the last interglacial period: 234U-230Th data from fossil coral reefs in the Bahamas. Geo. Soc. Am. Bull. 103, 82–97 (1991).

    Google Scholar 

  92. Muhs, D. R. & Simmons, K. R. Taphonomic problems in reconstructing sea-level history from the late Quaternary marine terraces of Barbados. Quat. Res. 88, 409–429 (2017).

    Google Scholar 

  93. Stirling, C. H. & Andersen, M. B. Uranium-series dating of fossil coral reefs: extending the sea-level record beyond the last glacial cycle. Earth Planet. Sci. Lett. 284, 269–283 (2009).

    Google Scholar 

  94. Milne, G. A. & Mitrovica, J. X. Searching for eustasy in deglacial sea-level histories. Quat. Sci. Rev. 27, 2292–2302 (2008).

    Google Scholar 

  95. Vyverberg, K. et al. Episodic reef growth in the granitic Seychelles during the Last Interglacial: implications for polar ice sheet dynamics. Mar. Geol. 399, 170–187 (2018).

    Google Scholar 

  96. Pan, T.-Y., Murray-Wallace, C. V., Dosseto, A. & Bourman, R. P. The last interglacial (MIS 5e) sea level highstand from a tectonically stable far-field setting, Yorke Peninsula, southern Australia. Mar. Geol. 398, 126–136 (2018).

    Google Scholar 

  97. Blanchon, P., Eisenhauer, A., Fietzke, J. & Liebetrau, V. Rapid sea-level rise and reef back-stepping at the close of the last interglacial highstand. Nature 458, 881–884 (2009).

    Google Scholar 

  98. Mauz, B., Shen, Z., Elmejdoub, N. & Spada, G. No evidence from the eastern Mediterranean for a MIS 5e double peak sea-level highstand. Quat. Res. 89, 505–510 (2018).

    Google Scholar 

  99. Zagwijn, W. H. Sea-level changes in the Netherlands during the Eemian. Geol. En. Mijnb. 62, 437–450 (1983).

    Google Scholar 

  100. Berger, A. & Loutre, M.-F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).

    Google Scholar 

  101. Schilt, A. et al. Atmospheric nitrous oxide during the last 140,000 years. Earth Planet. Sci. Lett. 300, 33–43 (2010).

    Google Scholar 

  102. Petit, J.-R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    Google Scholar 

  103. Barker, S. et al. Icebergs not the trigger for North Atlantic cold events. Nature 520, 333–336 (2015).

    Google Scholar 

  104. Ho, S. L. et al. Sea surface temperature variability in the Pacific sector of the Southern Ocean over the past 700 kyr. Paleoceanography 27, PA4202 (2012).

    Google Scholar 

  105. Cortese, G. & Abelmann, A. Radiolarian-based paleotemperatures during the last 160 kyr at ODP Site 1089 (Southern Ocean, Atlantic Sector). Palaeogeogr. Palaeoclimatol. Palaeoecol. 182, 259–286 (2002).

    Google Scholar 

  106. Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).

    Google Scholar 

Download references

Acknowledgements

N.L.M.B. and A.J.L. acknowledge funding from a UK Natural Environment Research Council (NERC) grant (NE/I008675/1). E.L.M. acknowledges funding support from a Philip Leverhulme Prize (2013). P.L.W. and S.S.R.J. acknowledge NERC Independent Research Fellowships (NE/K009958/1, NE/J018333/1). This paper has been the result of a several workshops funded by the Department of Geography at Durham University. The paper is a contribution to PALSEA (an INQUA International Focus Group and a PAGES working group), the INQUA Commission on Coastal and Marine Processes, the Sea Level and Coastal Change (SLaCC) working group and the Scientific Committee on Antarctic Research SERCE and PAIS programs.

Author information

Authors and Affiliations

Authors

Contributions

N.L.M.B. and E.L.M. conceived and led the study. P.L.W. conducted the GIA modelling. All authors contributed ideas and to the development and writing of the paper.

Corresponding author

Correspondence to Natasha L. M. Barlow.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barlow, N.L.M., McClymont, E.L., Whitehouse, P.L. et al. Lack of evidence for a substantial sea-level fluctuation within the Last Interglacial. Nature Geosci 11, 627–634 (2018). https://doi.org/10.1038/s41561-018-0195-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0195-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing