Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Influence of eruptive style on volcanic gas emission chemistry and temperature

Abstract

Gas bubbles form as magmas ascend in the crust and exsolve volatiles. These bubbles evolve chemically and physically as magma decompression and crystallization proceed. It is generally assumed that the gas remains in thermal equilibrium with the melt but the relationship between gas and melt redox state is debated. Here, using absorption spectroscopy, we report the composition of gases emitted from the lava lake of Kīlauea Volcano, Hawaii, and calculate equilibrium conditions for the gas emissions. Our observations span a transition between more and less vigorous-degassing regimes. They reveal a temperature range of up to 250 °C, and progressive oxidation of the gas, relative to solid rock buffers, with decreasing gas temperature. We suggest that these phenomena are the result of changing gas bubble size. We find that even for more viscous magmas, fast-rising bubbles can cool adiabatically, and lose the redox signature of their associated melts. This process can result in rapid changes in the abundances of redox-sensitive gas species. Gas composition is monitored at many volcanoes in support of hazard assessment but time averaging of observations can mask such variability arising from the dynamics of degassing. In addition, the observed redox decoupling between gas and melt calls for caution in using lava chemistry to infer the composition of associated volcanic gases.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Instrument set up and lava lake behaviour at Halema’uma’u on 5 March 2013.
Fig. 2: Observed and calculated gas properties for glass samples dredged from the Puna ridge.
Fig. 3: Computed equilibrium temperature and fO2 for spectrosccopic measurements of gas emissions from Kīlauea’s lava lake.
Fig. 4: Amount of gas cooling as a function of final bubble radius (at the surface) and magma viscosity.

References

  1. Gaillard, F., Scaillet, B. & Arndt, N. T. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 229–232 (2011).

    Article  Google Scholar 

  2. Simon, A. C. & Ripley, E. M. The role of magmatic sulfur in the formation of ore deposits. Rev. Mineral. Geochem. 73, 513–578 (2011).

    Article  Google Scholar 

  3. Allard, P., Burton, M. & Muré, F. Spectroscopic evidence for a lava fountain driven by previously accumulated magmatic gas. Nature 433, 407–410 (2005).

    Article  Google Scholar 

  4. Burton, M., Allard, P., Muré, F. & La Spina, A. Magmatic gas composition reveals the source depth of slug-driven Strombolian explosive activity. Science 317, 227–230 (2007).

    Article  Google Scholar 

  5. Oppenheimer, C. et al. Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica. Earth Planet. Sci. Lett. 306, 261–271 (2011).

    Article  Google Scholar 

  6. Burgisser, A. & Scaillet, B. Redox evolution of a degassing magma rising to the surface. Nature 445, 194–197 (2007).

    Article  Google Scholar 

  7. Moretti, R. & Papale, P. On the oxidation state and volatile behavior in multicomponent gas–melt equilibria. Chem. Geol. 213, 265–280 (2004).

    Article  Google Scholar 

  8. Jaupart, C. & Vergniolle, S. Laboratory models of Hawaiian and Strombolian eruptions. Nature 331, 58–60 (1988).

    Article  Google Scholar 

  9. Gerlach, T. M. Oxygen buffering of Kilauea volcanic gases and the oxygen fugacity of Kilauea basalt. Geochim. Cosmochim. Acta 57, 795–814 (1993).

    Article  Google Scholar 

  10. Greenland, L. P. Gas analyses from the Pu’u O’o eruption in 1985, Kilauea Volcano, Hawaii. Bull. Volcanol. 48, 341–348 (1986).

    Article  Google Scholar 

  11. Edmonds, M. et al. Magma storage, transport and degassing during the 2008–10 summit eruption at Kīlauea Volcano, Hawai’i. Geochim. Cosmochim. Acta 123, 284–301 (2013).

    Article  Google Scholar 

  12. Edmonds, M. & Gerlach, T. M. Vapor segregation and loss in basaltic melts. Geology 35, 751–754 (2007).

    Article  Google Scholar 

  13. Peters, N., Oppenheimer, C., Killingsworth, D. R., Frechette, J. & Kyle, P. Correlation of cycles in lava lake motion and degassing at Erebus Volcano, Antarctica. Geochem. Geophys. Geosyst. 15, 3244–3257 (2014).

    Article  Google Scholar 

  14. Patrick, M. R., Orr, T., Swanson, D. A. & Lev, E. Shallow and deep controls on lava lake surface motion at Kīlauea Volcano. J. Volcanol. Geotherm. Res. 328, 247–261 (2016).

    Article  Google Scholar 

  15. Gerlach, T. M. & Graeber, E. J. Volatile budget of Kilauea Volcano. Nature 313, 273–277 (1985).

    Article  Google Scholar 

  16. Naughton, J. J., Derby, J. V. & Glover, R. B. Infrared measurements on volcanic gas and fume: Kilauea eruption, 1968. J. Geophys. Res. 74, 3273–3277 (1969).

    Article  Google Scholar 

  17. Patrick, M. R., Anderson, K. R., Poland, M. P., Orr, T. R. & Swanson, D. A. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard. Geology 43, 831–834 (2015).

    Article  Google Scholar 

  18. Dixon, J. E., Clague, D. A. & Stolper, E. M. Degassing history of water, sulfur, and carbon in submarine lavas from Kilauea Volcano, Hawaii. J. Geol. 99, 371–394 (1991).

    Article  Google Scholar 

  19. Clague, D. A., Moore, J. G., Dixon, J. E. & Friesen, W. B. Petrology of submarine lavas from Kilauea’s Puna Ridge, Hawaii. J. Petrol. 36, 299–349 (1995).

    Article  Google Scholar 

  20. Dixon, J. E. & Stolper, E. M. An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part II: applications to degassing. J. Petrol. 36, 1633–1646 (1995).

    Google Scholar 

  21. Scaillet, B. & Pichavant, M. A model of sulphur solubility for hydrous mafic melts: application to the determination of magmatic fluid compositions of Italian volcanoes. Ann. Geophys. 48, 671–698 (2005).

    Google Scholar 

  22. Lesne, P., Scaillet, B., Pichavant, M., Iacono-Marziano, G. & Beny, J. M. The H2O solubility of alkali basaltic melts: an experimental study. Contrib. Mineral. Petrol. 162, 133–151 (2011).

    Article  Google Scholar 

  23. Lesne, P., Scaillet, B., Pichavant, M. & Beny, J. M. The carbon dioxide solubility in alkali basalts: an experimental study. Contrib. Mineral. Petrol. 162, 153–168 (2011).

    Article  Google Scholar 

  24. Holloway, J. R. Igneous fluids. Rev. Mineral. Geochem. 17, 211–233 (1987).

    Google Scholar 

  25. Alletti, M. et al. Chlorine partitioning between a basaltic melt and H2O–CO2 fluids at Mount Etna. Chem. Geol. 263, 37–50 (2009).

    Article  Google Scholar 

  26. Moretti, R. et al. Degassing vs. eruptive styles at Mt. Etna volcano (Sicily, Italy). Part I: volatile stocking, gas fluxing, and the shift from low-energy to highly explosive basaltic eruptions. Chem. Geol. 482, 1–17 (2018).

    Article  Google Scholar 

  27. Wright, T. L., Peck, D. L. & Shaw, H. R. in The Geophysics of the Pacific Ocean Basin and Its Margin (eds Sutton, G. H., Manghnani, M. H., Moberly, R & Mcafee, E. U.) 375–390 (American Geophysical Union, Washington DC, 1976).

  28. Burgisser, A. et al. Backward tracking of gas chemistry measurements at Erebus Volcano. Geochem. Geophys. Geosyst. 13, Q11010 (2012).

    Article  Google Scholar 

  29. Moussallam, Y. et al. The impact of degassing on the oxidation state of basaltic magmas: a case study of Kīlauea volcano. Earth Planet. Sci. Lett. 450, 317–325 (2016).

    Article  Google Scholar 

  30. Elkins-Tanton, L. T. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008).

    Article  Google Scholar 

  31. Dingwell, D. B., Courtial, P., Giordano, D. & Nichols, A. R. L. Viscosity of peridotite liquid. Earth Planet. Sci. Lett. 226, 127–138 (2004).

    Article  Google Scholar 

  32. Li, Z. X. A. & Lee, C.-T. A. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet. Sci. Lett. 228, 483–493 (2004).

    Article  Google Scholar 

  33. Holland, H. D. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).

    Article  Google Scholar 

  34. Wallace, P. & Carmichael, I. S. Sulfur in basaltic magmas. Geochim. Cosmochim. Acta 56, 1863–1874 (1992).

    Article  Google Scholar 

  35. Oppenheimer, C. & Kyle, P. R. Probing the magma plumbing of Erebus Volcano, Antarctica, by open-path FTIR spectroscopy of gas emissions. J. Volcanol. Geotherm. Res. 177, 743–754 (2008).

    Article  Google Scholar 

  36. Rodgers, C. D. Characterization and error analysis of profiles retrieved from remote sounding measurements. J. Geophys. Res. 95, 5587–5595 (1990).

    Article  Google Scholar 

  37. Horrocks, L. A. et al. Open‐path Fourier transform infrared spectroscopy of SO2: an empirical error budget analysis, with implications for volcano monitoring. J. Geophys. Res. 106, 27647–27659 (2001).

    Article  Google Scholar 

  38. Oppenheimer, C., Lomakina, A. S., Kyle, P. R., Kingsbury, N. G. & Boichu, M. Pulsatory magma supply to a phonolite lava lake. Earth Planet. Sci. Lett. 284, 392–398 (2009).

    Article  Google Scholar 

  39. Chase, M. W. NIST-JANAF Thermochemical Tables J. Phys. Chem. Ref. Data, Monograph No. 9 (ACS, AIP, NSRDS, 1998).

  40. Martin, R. S., Mather, T. A. & Pyle, D. M. High-temperature mixtures of magmatic and atmospheric gases. Geochem. Geophys. Geosyst. 7, Q04006 (2006).

    Google Scholar 

  41. Clift, R., Grace, J. R. & Weber, M. E. Stability of bubbles in fluidized beds. Ind. Eng. Chem. Fundam. 13, 45–51 (1974).

    Article  Google Scholar 

  42. Figueroa-Espinoza, B. & Legendre, D. Mass or heat transfer from spheroidal gas bubbles rising through a stationary liquid. Chem. Eng. Sci. 65, 6296–6309 (2010).

    Article  Google Scholar 

  43. Turner, J. S. Buoyancy Effects in Fluids (Cambridge Univ. Press, Cambridge, 1979).

    Google Scholar 

  44. Alberti, M., Weber, R. & Mancini, M. Re-creating Hottel’s emissivity charts for water vapor and extending them to 40 bar pressure using HITEMP-2010 data base. Combust. Flame 169, 141–153 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Environment Research Council (through the Centre for the Observation and Modelling of Volcanoes, Earthquakes and Tectonics and grant NE/N009312/1) and LabEx VOLTAIRE (ANR-10-LABX-100-01). Y.M. received additional support from the Leverhulme Trust. We thank P. Kelly (US Geological Survey) for his review of the pre-submission manuscript. We are grateful to V. Tsanev for discussion on gas radiation at high temperature and pressure.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to preparation and revision of the manuscript. C.O. analysed and modelled spectroscopic data; B.S. modelled the melt-inclusion data; A.W. and C.O. developed the bubble-cooling model; A.J.S. and T.E. led the field campaign; and Y.M. contributed wider context on melt redox evolution.

Corresponding author

Correspondence to Clive Oppenheimer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oppenheimer, C., Scaillet, B., Woods, A. et al. Influence of eruptive style on volcanic gas emission chemistry and temperature. Nature Geosci 11, 678–681 (2018). https://doi.org/10.1038/s41561-018-0194-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0194-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing