A long-term decrease in the persistence of soil carbon caused by ancient Maya land use


The long-term effects of deforestation on tropical forest soil carbon reservoirs are important for estimating the consequences of land use on the global carbon cycle, but are poorly understood. The Maya Lowlands of Mexico and Guatemala provide a unique opportunity to assess this question, given the widespread deforestation by the ancient Maya that began ~4,000 years ago. Here, we compare radiocarbon ages of plant waxes and macrofossils in sediment cores from three lakes in the Maya Lowlands to record past changes in the mean soil transit time of plant waxes (MTTwax). MTTwax indicates the average age of plant waxes that are transported from soils to lake sediments, and comparison of radiocarbon data from soils and lake sediments within the same catchment indicates that MTTwax reflects the age of carbon in deep soils. All three sediment cores showed a decrease in MTTwax, ranging from 2,300 to 800 years, over the past 3,500 years. This decrease in MTTwax, indicating shorter storage times for carbon in lake catchment soils, is associated with evidence for ancient Maya deforestation. MTTwax never recovered to pre-deforestation values, despite subsequent reforestation, implying that current tropical deforestation will have long-lasting effects on soil carbon sinks.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Relief map of the Maya Lowlands indicating the location of the studied lakes.
Fig. 2: Plant wax and bulk SOC radiocarbon results from soils and surficial sediments in the Lake Chichancanab catchment.
Fig. 3
Fig. 4: Comparison of MTTwax data from the Maya Lowlands with three other globally distributed Holocene-age records.


  1. 1.

    Hiederer, R. & Köchy, M. Global Soil Organic Carbon Estimates and the Harmonized World Soil Database (Publications Office of the European Union, 2011).

  2. 2.

    Scharlemann, J. P., Tanner, E. V., Hiederer, R. & Kapos, V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manage. 5, 81–91 (2014).

    Article  Google Scholar 

  3. 3.

    Moore, S. et al. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493, 660–663 (2013).

    Article  Google Scholar 

  4. 4.

    Conant, R. T. et al. Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward. Glob. Change Biol. 17, 3392–3404 (2011).

    Article  Google Scholar 

  5. 5.

    Jobbagy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).

    Article  Google Scholar 

  6. 6.

    Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Hendricks, D. M. Mineral control of soil organic carbon storage and turnover. Nature 389, 170–173 (1997).

    Article  Google Scholar 

  7. 7.

    He, Y. et al. Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science 353, 1419–1424 (2016).

    Article  Google Scholar 

  8. 8.

    Trumbore, S. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecol. Appl. 10, 399–411 (2000).

    Article  Google Scholar 

  9. 9.

    Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks: a meta-analysis. Glob. Change Biol. 17, 1658–1670 (2011).

    Article  Google Scholar 

  10. 10.

    Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    Article  Google Scholar 

  11. 11.

    Turner, B. L. II in Precolumbian Population History in the Maya Lowlands (eds Culbert, T. P. & Rice, D. S.) 301–324 (Univ. New Mexico Press, Albuquerque, 1990).

  12. 12.

    Anselmetti, F. S., Hodell, D. A., Ariztegui, D., Brenner, M. & Rosenmeier, M. F. Quantification of soil erosion rates related to ancient Maya deforestation. Geology 35, 915–918 (2007).

    Article  Google Scholar 

  13. 13.

    Wahl, D., Byrne, R., Schreiner, T. & Hansen, R. Palaeolimnological evidence of late-Holocene settlement and abandonment in the Mirador Basin, Peten, Guatemala. Holocene 17, 813–820 (2007).

    Article  Google Scholar 

  14. 14.

    Beach, T. et al. Stability and instability on Maya Lowlands tropical hillslope soils. Geomorphology 305, 185–208 (2018).

    Article  Google Scholar 

  15. 15.

    Leyden, B. W. Man and climate in the Maya Lowlands. Quat. Res 28, 407–417 (1987).

    Article  Google Scholar 

  16. 16.

    Mueller, A. D. et al. Recovery of the forest ecosystem in the tropical lowlands of northern Guatemala after disintegration of Classic Maya polities. Geology 38, 523–526 (2010).

    Article  Google Scholar 

  17. 17.

    Leyden, B. W., Brenner, M. & Dahlin, B. H. Cultural and climatic history of Coba, a lowland Maya city in Quintana Roo, Mexico. Quat. Res. 49, 111–122 (1998).

    Article  Google Scholar 

  18. 18.

    Kolattukudy, P. Plant waxes. Lipids 5, 259–275 (1970).

    Article  Google Scholar 

  19. 19.

    Douglas, P. M. et al. Drought, agricultural adaptation, and sociopolitical collapse in the Maya Lowlands. Proc. Natl Acad. Sci. USA 112, 5607–5612 (2015).

    Article  Google Scholar 

  20. 20.

    Douglas, P. M. et al. Pre-aged plant waxes in tropical lake sediments and their influence on the chronology of molecular paleoclimate proxy records. Geochim Cosmochim. Acta 141, 346–364 (2014).

    Article  Google Scholar 

  21. 21.

    Bush, R. T. & McInerney, F. A.. Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochim. Cosmochim. Acta 117, 161–179 (2013).

    Article  Google Scholar 

  22. 22.

    Sierra, C. A., Müller, M., Metzler, H., Manzoni, S. & Trumbore, S. E. The muddle of ages, turnover, transit, and residence times in the carbon cycle. Glob. Change Biol. 23, 1763–1773 (2017).

    Article  Google Scholar 

  23. 23.

    Tao, S., Eglinton, T. I., Montlu‡on, D. B., McIntyre, C. & Zhao, M. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: regional significance and global relevance. Earth Planet. Sci. Lett. 414, 77–86 (2015).

    Article  Google Scholar 

  24. 24.

    Feng, X. et al. Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins. Proc. Natl Acad. Sci. USA 110, 14168–14173 (2013).

    Article  Google Scholar 

  25. 25.

    Vonk, J. E., van Dongen, B. E. & Gustafsson, O. Selective preservation of old organic carbon fluvially released from sub-Arctic soils. Geophys Res. Lett. 37, L11605 (2010).

    Article  Google Scholar 

  26. 26.

    Voort, T. et al. Diverse soil carbon dynamics expressed at the molecular level. Geophys. Res. Lett. 44, 11840–11850 (2017).

    Article  Google Scholar 

  27. 27.

    Gierga, M. et al. Long-stored soil carbon released by prehistoric land use: evidence from compound-specific radiocarbon analysis on Soppensee lake sediments. Quat. Sci. Rev. 144, 123–131 (2016).

    Article  Google Scholar 

  28. 28.

    Schefuß, E. et al. Hydrologic control of carbon cycling and aged carbon discharge in the Congo River basin. Nat. Geosci. 9, 687–690 (2016).

    Article  Google Scholar 

  29. 29.

    Smittenberg, R. H., Eglinton, T. I., Schouten, S. & Damste, J. S. S. Ongoing buildup of refractory organic carbon in boreal soils during the Holocene. Science 314, 1283–1286 (2006).

    Article  Google Scholar 

  30. 30.

    Rumpel, C. & Kögel-Knabner, I. Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338, 143–158 (2011).

    Article  Google Scholar 

  31. 31.

    Lechleitner, F. A., Dittmar, T., Baldini, J. U., Prufer, K. M. & Eglinton, T. I. Molecular signatures of dissolved organic matter in a tropical karst system. Org. Geochem. 113, 141–149 (2017).

    Article  Google Scholar 

  32. 32.

    Drenzek, N. J., Montlucon, D. B., Yunker, M. B., Macdonald, R. W. & Eglinton, T. I. Constraints on the origin of sedimentary organic carbon in the Beaufort Sea from coupled molecular C-13 and C-14 measurements. Mar. Chem. 103, 146–162 (2007).

    Article  Google Scholar 

  33. 33.

    Rice, D.. & Rice, P. in Precolumbian Population History in the Maya Lowlands (eds Culbert, T. P. & Rice, D. S.) 123–148 (Univ. New Mexico Press, Albuquerque, 1990).

  34. 34.

    Dunning, N. P. & Beach, T. in Landscapes and Societies: Selected Cases (eds Martini, I. P. & Chesworth, W.) 369–389 (Springer, Dordrecht, 2011).

  35. 35.

    Schwartz, N. in The Social Causes of Deforestation in Latin America (eds Schwartz, N., Painter, M. & Durham, W. H.) 101–130 (Univ. Michigan Press, Ann Arbor, 1995).

  36. 36.

    Douglas, P. M., Demarest, A. A., Brenner, M. & Canuto, M. A. Impacts of climate change on the collapse of Lowland Maya civilization. Annu. Rev. Earth Planet. Sci. 44, 613–645 (2016).

    Article  Google Scholar 

  37. 37.

    Rowley, M. C., Grand, S. & Verrecchia, É. P. Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry 137, 27–49 (2018).

    Article  Google Scholar 

  38. 38.

    Bautista, F., Palacio-Aponte, G., Quintana, P. & Zinck, J. A. Spatial distribution and development of soils in tropical karst areas from the Peninsula of Yucatan, Mexico. Geomorphology 135, 308–321 (2011).

    Article  Google Scholar 

  39. 39.

    Xiao, S., Zhang, W., Ye, Y., Zhao, J. & Wang, K. Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen, and microbial activity in a Karst ecosystem. Sci. Rep. 7, 41402 (2017).

    Article  Google Scholar 

  40. 40.

    Six, J., Conant, R., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241, 155–176 (2002).

    Article  Google Scholar 

  41. 41.

    Jiang, Y.-J. et al. Impact of land-use change on soil properties in a typical karst agricultural region of Southwest China: a case study of Xiaojiang watershed, Yunnan. Environ. Geol. 50, 911 (2006).

    Article  Google Scholar 

  42. 42.

    Hu, Y., Du, Z., Wang, Q. & Li, G. Combined deep sampling and mass-based approaches to assess soil carbon and nitrogen losses due to land-use changes in karst area of southwestern China. Solid Earth 7, 1075–1084 (2016).

    Article  Google Scholar 

  43. 43.

    Hodell, D. A., Brenner, M. & Curtis, J. H. Terminal classic drought in the northern Maya lowlands inferred from multiple sediment cores in Lake Chichancanab (Mexico). Quat. Sci. Rev. 24, 1413–1427 (2005).

    Article  Google Scholar 

  44. 44.

    Berhe, A. A. & Kleber, M. Erosion, deposition, and the persistence of soil organic matter: mechanistic considerations and problems with terminology. Earth Surf. Proc. Land 38, 908–912 (2013).

    Article  Google Scholar 

  45. 45.

    Kaplan, J. O. et al. Holocene carbon emissions as a result of anthropogenic land cover change. Holocene 21, 775–791 (2011).

    Article  Google Scholar 

  46. 46.

    Bauska, T. K. et al. Links between atmospheric carbon dioxide, the land carbon reservoir and climate over the past millennium. Nat. Geosci. 8, 383–387 (2015).

    Article  Google Scholar 

  47. 47.

    Ruddiman, W. F. The anthropogenic greenhouse era began thousands of years ago. Clim. Change 61, 261–293 (2003).

  48. 48.

    Bauer-Gottwein, P. et al. Review: the Yucatán Peninsula karst aquifer, Mexico. Hydrogeol. J. 19, 507–524 (2011).

    Article  Google Scholar 

  49. 49.

    Johnston, K. J. Preclassic Maya occupation of the Itzan escarpment, lower Río de la Pasión, Petén, Guatemala. Anc. Mesoam. 17, 177–201 (2006).

    Article  Google Scholar 

  50. 50.

    Leyden, B. W. Pollen evidence for climatic variability and cultural disturbance in the Maya lowlands. Anc. Mesoam. 13, 85–101 (2002).

    Article  Google Scholar 

  51. 51.

    New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).

    Article  Google Scholar 

  52. 52.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).

    Article  Google Scholar 

  53. 53.

    Nachtergaele, F. et al. Harmonized World Soil Database Version 1 3–43 (FAO, IIASA, ISRIC & ISS-CAS, 2009).

  54. 54.

    Rosenmeier, M. F., Hodell, D. A., Brenner, M., Curtis, J. H. & Guilderson, T. P. A 4000-year lacustrine record of environmental change in the southern Maya lowlands, Peten, Guatemala. Quat. Res. 57, 183–190 (2002).

    Article  Google Scholar 

  55. 55.

    Rosenmeier, M. F. et al. Influence of vegetation change on watershed hydrology: implications for paleoclimatic interpretation of lacustrine δ18O records. J. Paleolimnol. 27, 117–131 (2002).

    Article  Google Scholar 

  56. 56.

    Eglinton, T. I., Aluwihare, L. I., Bauer, J. E., Druffel, E. R. M. & McNichol, A. P. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Anal. Chem. 68, 904–912 (1996).

    Article  Google Scholar 

  57. 57.

    Galy, V. & Eglinton, T. Protracted storage of biospheric carbon in the Ganges–Brahmaputra basin. Nat. Geosci. 4, 843–847 (2011).

    Article  Google Scholar 

  58. 58.

    Douglas, P. M. J., Pagani, M., Brenner, M., Hodell, D. A. & Curtis, J. H. Aridity and vegetation composition are important determinants of leaf-wax δD values in southeastern Mexico and Central America. Geochim. Cosmochim. Acta 97, 24–45 (2012).

    Article  Google Scholar 

  59. 59.

    Liu, H. & Liu, W. Concentration and distributions of fatty acids in algae, submerged plants and terrestrial plants from the northeastern Tibetan Plateau. Org. Geochem. 113, 17–26 (2017).

    Article  Google Scholar 

  60. 60.

    Wu, M. S. et al. Altitude effect on leaf wax carbon isotopic composition in humid tropical forests. Geochim. Cosmochim. Acta 206, 1–17 (2017).

    Article  Google Scholar 

  61. 61.

    Hodell, D. A., Curtis, J. H. & Brenner, M. Possible role of climate in the collapse of Classic Maya civilization. Nature 375, 391–394 (1995).

    Article  Google Scholar 

  62. 62.

    Hodell, D. A., Brenner, M., Curtis, J. H. & Guilderson, T. Solar forcing of drought frequency in the Maya lowlands. Science 292, 1367–1370 (2001).

    Article  Google Scholar 

  63. 63.

    Brock, F., Higham, T., Ditchfield, P. & Ramsey, C. B. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52, 103–112 (2010).

    Article  Google Scholar 

  64. 64.

    Midwood, A. & Boutton, T. Soil carbonate decomposition by acid has little effect on δ13C of organic matter. Soil Biol. Biochem. 30, 1301–1307 (1998).

    Article  Google Scholar 

  65. 65.

    Blaauw, M. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat. Geochronol. 5, 512–518 (2010).

    Article  Google Scholar 

  66. 66.

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    Article  Google Scholar 

  67. 67.

    Häggi, C., Zech, R., McIntyre, C. & Eglinton, T. On the stratigraphic integrity of leaf-wax biomarkers in loess-paleosols. Biogeosciences 11, 2455–2463 (2014).

    Article  Google Scholar 

  68. 68.

    Hikosaka, K. Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover. Ann. Bot. 95, 521–533 (2004).

    Article  Google Scholar 

  69. 69.

    Cornett, R., Risto, B. & Lee, D. Measuring groundwater transport through lake sediments by advection and diffusion. Water Resour. Res. 25, 1815–1823 (1989).

    Article  Google Scholar 

  70. 70.

    Binford, M. W. Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. J. Paleolimnol. 3, 253–267 (1990).

    Article  Google Scholar 

  71. 71.

    Deevey, E. S. Jr, Brenner, M. & Binford, M. W. Paleolimnology of the Peten Lake District, Guatemala III: Late Pleistocene and Gamblian environments of the Maya area. Hydrobiologia 103, 211–216 (1983).

    Article  Google Scholar 

Download references


This paper is dedicated to M. Pagani. We thank A. McNichol and L. Xu for facilitating many of the compound-specific radiocarbon measurements. Funding for this work was provided, in part, by a US National Science Foundation Graduate Research Fellowship (to P.M.J.D.) and by a grant from the Italian Ministry of the Environment (to M.P.).

Author information




P.M.J.D. and M.P. designed the study. M.B., J.H.C., A.B. and K.J. collected, described and sampled the sediment cores. M.P. collected the soil samples. P.M.J.D. performed the geochemical analyses, under the guidance of T.I.E. and M.P. P.M.J.D. analysed the data and wrote the manuscript, with input from all authors.

Corresponding author

Correspondence to Peter M. J. Douglas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Douglas, P.M.J., Pagani, M., Eglinton, T.I. et al. A long-term decrease in the persistence of soil carbon caused by ancient Maya land use. Nature Geosci 11, 645–649 (2018). https://doi.org/10.1038/s41561-018-0192-7

Download citation

Further reading