A rise in the atmospheric CO2 concentration of ~20 parts per million over the course of the Holocene has long been recognized as exceptional among interglacials and is in need of explanation. Previous hypotheses involved natural or anthropogenic changes in terrestrial biomass, carbonate compensation in response to deglacial outgassing of oceanic CO2, and enhanced shallow water carbonate deposition. Here, we compile new and previously published fossil-bound nitrogen isotope records from the Southern Ocean that indicate a rise in surface nitrate concentration through the Holocene. When coupled with increasing or constant export production, these data suggest an acceleration of nitrate supply to the Southern Ocean surface from underlying deep water. This change would have weakened the ocean’s biological pump that stores CO2 in the ocean interior, possibly explaining the Holocene atmospheric CO2 rise. Over the Holocene, the circum-North Atlantic region cooled, and the formation of North Atlantic Deep Water appears to have slowed. Thus, the ‘seesaw’ in deep ocean ventilation between the North Atlantic and the Southern Ocean that has been invoked for millennial-scale events, deglaciations and the last interglacial period may have also operated, albeit in a more gradual form, over the Holocene.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Waugh, D. W. Changes in the ventilation of the southern oceans. Philos. Trans. R. Soc. A 372, 20130269 (2014).

  2. 2.

    Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).

  3. 3.

    Indermühle, A. et al. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398, 121–126 (1999).

  4. 4.

    Ruddiman, W. F. The Anthropogenic greenhouse era began thousands of years ago. Clim. Change 61, 261–293 (2003).

  5. 5.

    Broecker, W. S., Lynch-Stieglitz, J., Clark, E., Hajdas, I. & Bonani, G. What caused the atmosphere’s CO2 content to rise during the last 8000 years? Geochem. Geophys. Geosyst. 2, 2001GC000177 (2001).

  6. 6.

    Ridgwell, A. J., Watson, A. J., Maslin, M. A. & Kaplan, J. O. Implications of coral reef buildup for the controls on atmospheric CO2 since the Last Glacial Maximum. Paleoceanography 18, 1083 (2003).

  7. 7.

    Sunda, W. G. & Huntsman, S. A. Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390, 389–392 (1997).

  8. 8.

    Sarmiento, J. L. & Toggweiler, J. R. A new model for the role of the oceans in determining atmospheric p CO2. Nature 308, 621–624 (1984).

  9. 9.

    Toggweiler, J. R., Russell, J. L. & Carson, S. R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21, PA2005 (2006).

  10. 10.

    Moreno, P. I., François, J. P., Moy, C. M. & Villa-Martínez, R. Covariability of the southern westerlies and atmospheric CO2 during the Holocene. Geology 38, 727–730 (2010).

  11. 11.

    Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323, 1443–1448 (2009).

  12. 12.

    Denton, G. H. et al. The Last Glacial termination. Science 328, 1652–1656 (2010).

  13. 13.

    Lamy, F. et al. Holocene changes in the position and intensity of the southern westerly wind belt. Nat. Geosci. 3, 695–699 (2010).

  14. 14.

    Martinez-Garcia, A. et al. Iron fertilization of the Subantarctic Ocean during the last ice age. Science 343, 1347–1350 (2014).

  15. 15.

    Studer, A. S. et al. Antarctic zone nutrient conditions during the last two glacial cycles. Paleoceanography 30, 2014PA002745 (2015).

  16. 16.

    Wang, X. T. et al. Deep-sea coral evidence for lower Southern Ocean surface nitrate concentrations during the last ice age. Proc. Natl Acad. Sci. USA 114, 3352–3357 (2017).

  17. 17.

    Francois, R. et al. Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389, 929–935 (1997).

  18. 18.

    Dezileau, L., Bareille, G. & Reyss, J. L. The 231Pa/230Th ratio as a proxy for past changes in opal fluxes in the Indian sector of the Southern Ocean. Mar. Chem. 81, 105–117 (2003).

  19. 19.

    Robinson, R. S. et al. A review of nitrogen isotopic alteration in marine sediments. Paleoceanography 27, PA4203 (2012).

  20. 20.

    Ren, H. et al. Impact of glacial/interglacial sea level change on the ocean nitrogen cycle. Proc. Natl Acad. Sci. USA 114, E6759–E6766 (2017).

  21. 21.

    Shemesh, A., Macko, S. A., Charles, C. D. & Rau, G. H. Isotopic evidence for reduced productivity in the glacial Southern. Ocean. Sci. 262, 407–410 (1993).

  22. 22.

    Sigman, D. M., Altabet, M. A., Francois, R., McCorkle, D. C. & Gaillard, J.-F. The isotopic composition of diatom-bound nitrogen in Southern Ocean sediments. Paleoceanography 14, 118–134 (1999).

  23. 23.

    Robinson, R. S., Brunelle, B. G. & Sigman, D. M. Revisiting nutrient utilization in the glacial Antarctic: evidence from a new method for diatom-bound N isotopic analysis. Paleoceanography 19, PA3001 (2004).

  24. 24.

    Studer, A. S., Ellis, K. K., Oleynik, S., Sigman, D. M. & Haug, G. H. Size-specific opal-bound nitrogen isotope measurements in North Pacific sediments. Geochim. Cosmochim. Acta 120, 179–194 (2013).

  25. 25.

    Horn, M. G., Beucher, C. P., Robinson, R. S. & Brzezinski, M. A. Southern Ocean nitrogen and silicon dynamics during the last deglaciation. Earth Plant. Sci. Lett. 310, 334–339 (2011).

  26. 26.

    Robinson, R. S. & Sigman, D. M. Nitrogen isotopic evidence for a poleward decrease in surface nitrate within the ice age Antarctic. Quat. Sci. Rev. 27, 1076–1090 (2008).

  27. 27.

    Marconi, D. et al. Tropical dominance of N2 fixation in the North Atlantic Ocean. Glob. Biogeochem. Cycles 31, 1608–1623 (2017).

  28. 28.

    Rafter, P. A., DiFiore, P. J. & Sigman, D. M. Coupled nitrate nitrogen and oxygen isotopes and organic matter remineralization in the Southern and Pacific Oceans. J. Geophys. Res. 118, 4781–4794 (2013).

  29. 29.

    Sigman, D. M., Altabet, M. A., McCorkle, D. C., François, R. & Fischer, G. The δ15N of nitrate in the Southern Ocean: consumption of nitrate in surface waters. Glob. Biogeochem. Cycles 13, 1149–1166 (1999).

  30. 30.

    Galbraith, E. D. et al. The acceleration of oceanic denitrification during deglacial warming. Nat. Geosci. 6, 579–584 (2013).

  31. 31.

    Lambert, F. et al. Dust–climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452, 616–619 (2008).

  32. 32.

    Anderson, R. F. et al. Biological response to millennial variability of dust and nutrient supply in the Subantarctic South Atlantic Ocean. Philos. Trans. R. Soc. A 372, 20130054 (2014).

  33. 33.

    Meckler, A. N. et al. Deglacial pulses of deep-ocean silicate into the subtropical North Atlantic Ocean. Nature 495, 495–498 (2013).

  34. 34.

    Marshall, J. & Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5, 171–180 (2012).

  35. 35.

    Wolfe, C. L. & Cessi, P. What sets the strength of the middepth stratification and overturning circulation in eddying ocean models? J. Phys. Oceanogr. 40, 1520–1538 (2010).

  36. 36.

    Gnanadesikan, A. A simple predictive model for the structure of the oceanic pycnocline. Science 283, 2077–2079 (1999).

  37. 37.

    Keeling, R. F. & Visbeck, M. Antarctic stratification and glacial CO2. Nature 412, 605–606 (2001).

  38. 38.

    Hain, M. P., Sigman, D. M. & Haug, G. H. Carbon dioxide effects of Antarctic stratification, North Atlantic Intermediate Water formation, and subantarctic nutrient drawdown during the last ice age: diagnosis and synthesis in a geochemical box model. Glob. Biogeochem. Cycles 24, GB4023 (2010).

  39. 39.

    Schmitt, J. et al. Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science 336, 711–714 (2012).

  40. 40.

    Burke, A. & Robinson, L. F. The Southern Ocean’s role in carbon exchange during the last deglaciation. Science 335, 557–561 (2012).

  41. 41.

    Yu, J. et al. Loss of carbon from the deep sea since the last glacial maximum. Science 330, 1084–1087 (2010).

  42. 42.

    Broecker, W. S. & Peng, T.-H. The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Glob. Biogeochem. Cycles 1, 15–29 (1987).

  43. 43.

    Goodwin, P., Oliver, K. I. C. & Lenton, T. M. Observational constraints on the causes of Holocene CO2 change. Glob. Biogeochem. Cycles 25, GB2011 (2011).

  44. 44.

    Brovkin, V. et al. Comparative carbon cycle dynamics of the present and last interglacial. Quat. Sci. Rev. 137, 15–32 (2016).

  45. 45.

    Thornalley, D. J. R. et al. Long-term variations in Iceland–Scotland overflow strength during the Holocene. Clim. Past 9, 2073–2084 (2013).

  46. 46.

    Hoogakker, B. A. A. et al. Dynamics of North Atlantic Deep Water masses during the Holocene. Paleoceanography 26, PA4214 (2011).

  47. 47.

    Kissel, C., Van Toer, A., Laj, C., Cortijo, E. & Michel, E. Variations in the strength of the North Atlantic bottom water during Holocene. Earth Planet. Sci. Lett. 369–370, 248–259 (2013).

  48. 48.

    Broecker, W. S. Paleocean circulation during the last deglaciation: a bipolar seesaw? Paleoceanography 13, 119–121 (1998).

  49. 49.

    Ruddiman, W. F. et al. Late Holocene climate: natural or anthropogenic? Rev. Geophys. 54, 93–118 (2016).

  50. 50.

    Liu, Z. et al. The Holocene temperature conundrum. Proc. Natl Acad. Sci. USA 111, E3501–E3505 (2014).

  51. 51.

    Orsi, A. H., Whitworth, T. III & Nowlin, W. D. Jr On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I 42, 641–673 (1995).

  52. 52.

    Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 542–549 (2015).

  53. 53.

    Knapp, A. N., Sigman, D. M. & Lipschultz, F. N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic time series study site. Glob. Biogeochem. Cycles 19, GB1018 (2005).

  54. 54.

    Weigand, M. A., Foriel, J., Barnett, B., Oleynik, S. & Sigman, D. M. Updates to instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method. Rapid Commun. Mass Spectrom. 30, 1365–1383 (2016).

  55. 55.

    Mortlock, R. A. & Froelich, P. N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res 36, 1415–1426 (1989).

  56. 56.

    François, R., Frank, M., Rutgers van der Loeff, M. M. & Bacon, M. P. 230Th normalization: an essential tool for interpreting sedimentary fluxes during the late Quaternary. Paleoceanography 19, PA1018 (2004).

  57. 57.

    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

  58. 58.

    Bronk Ramsey, C. & Lee, S. Recent and planned developments of the Program OxCal. Radiocarbon 55, 720–730 (2013).

  59. 59.

    Key, R. M. et al. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 18, GB4031 (2004).

Download references


This study was supported by Swiss NSF grant PBEZP2_145695 to A.S.S., US NSF grants 1401489 and 1234664 to D.M.S., Swiss NSF grant PZ00P2_142424 to A.M.-G., grants PP00P2-144811 and PP00P2_172915 to S.L.J., by the Deutsche Forschungsgemeinschaft through grant Li1815/4 to J.A.L., by funding from the Swedish Research Council VR-349-2012-6278 to E.M., from the Natural Environment Research Council NE/N003861/1 to L.F.R., and from the French INSU/LEFE Indien Sud to A.M. This research was also supported by ExxonMobil through the Andlinger Center for Energy and the Environment at Princeton University and by the Grand Challenges Program of Princeton University. Cores MD11-3353 and MD12-3396CQ were retrieved during Indien Sud oceanographic cruises (A.M.) and we express our thanks to the crew of the R/V Marion Dufresne as well as the French Polar Institute (IPEV). The authors thank K. Hendry, M. Palmer and B. Heinz for their valuable input, and X. Crosta for his help with diatom species identification.

Author information

Author notes

    • Anja S. Studer

    Present address: Department of Environmental Sciences, University of Basel, Basel, Switzerland


  1. Max Planck Institute for Chemistry, Climate Geochemistry Department, Mainz, Germany

    • Anja S. Studer
    • , Alfredo Martínez-García
    •  & Gerald H. Haug
  2. Department of Geosciences, Princeton University, Princeton, NJ, USA

    • Daniel M. Sigman
    •  & Xingchen T. Wang
  3. Institute of Geological Sciences and Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland

    • Lena M. Thöle
    •  & Samuel L. Jaccard
  4. Laboratoire des Sciences du Climat et de l’Environnement (LSCE), Gif-sur-Yvette, France

    • Elisabeth Michel
    •  & Alain Mazaud
  5. Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany

    • Jörg A. Lippold
  6. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA

    • Xingchen T. Wang
    •  & Jess F. Adkins
  7. Bristol Isotope Group, School of Earth Sciences, University of Bristol, Bristol, UK

    • Laura F. Robinson
  8. Department of Earth Sciences, ETH Zurich, Zurich, Switzerland

    • Gerald H. Haug


  1. Search for Anja S. Studer in:

  2. Search for Daniel M. Sigman in:

  3. Search for Alfredo Martínez-García in:

  4. Search for Lena M. Thöle in:

  5. Search for Elisabeth Michel in:

  6. Search for Samuel L. Jaccard in:

  7. Search for Jörg A. Lippold in:

  8. Search for Alain Mazaud in:

  9. Search for Xingchen T. Wang in:

  10. Search for Laura F. Robinson in:

  11. Search for Jess F. Adkins in:

  12. Search for Gerald H. Haug in:


A.S.S., D.M.S., A.M.-G. and G.H.H. designed the study. A.S.S. performed the δ15Ndb analyses and wrote the first draft of the manuscript with D.M.S., A.M.-G. and G.H.H. L.M.T., S.L.J. and J.A.L. contributed the 230Th-normalized opal flux data. E.M. and A.M. provided access to the sediment cores and measured the radiocarbon ages for the construction of the age model. L.F.R. and J.F.A. recovered the corals, and X.T.W. generated the coral-bound δ15N data. All authors contributed to the interpretation of the data and provided input to the final manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Anja S. Studer.

Supplementary information

About this article

Publication history




Issue Date