Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Holocene dynamics of the Southern Hemisphere westerly winds and possible links to CO2 outgassing

Abstract

The Southern Hemisphere westerly winds (SHW) play an important role in regulating the capacity of the Southern Ocean carbon sink. They modulate upwelling of carbon-rich deep water and, with sea ice, determine the ocean surface area available for air–sea gas exchange. Some models indicate that the current strengthening and poleward shift of these winds will weaken the carbon sink. If correct, centennial- to millennial-scale reconstructions of the SHW intensity should be linked with past changes in atmospheric CO2, temperature and sea ice. Here we present a 12,300-year reconstruction of wind strength based on three independent proxies that track inputs of sea-salt aerosols and minerogenic particles accumulating in lake sediments on sub-Antarctic Macquarie Island. Between about 12.1 thousand years ago (ka) and 11.2 ka, and since about 7 ka, the wind intensities were above their long-term mean and corresponded with increasing atmospheric CO2. Conversely, from about 11.2 to 7.2 ka, the wind intensities were below their long-term mean and corresponded with decreasing atmospheric CO2. These observations are consistent with model inferences of enhanced SHW contributing to the long-term outgassing of CO2 from the Southern Ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SHW and wind anomalies in relation to the location of Macquarie Island
Fig. 2: Changes in relative strength of the Southern Hemisphere westerly winds based on proxies in a sediment core from Emerald Lake.
Fig. 3: Comparison of Macquarie Island wind proxies with sea ice, temperature and CO2.

Similar content being viewed by others

References

  1. Mikaloff-Fletcher, S. E. An increasing carbon sink?. Science 349, 1165 (2015).

    Article  Google Scholar 

  2. Hodgson, D. A. & Sime, L. C. Southern westerlies and CO2. Nat. Geosci. 3, 666–667 (2010).

    Article  Google Scholar 

  3. Toggweiler, J. R., Russell, J. L. & Carson, S. R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Palaeoceanography 21, PA2005 (2006).

    Article  Google Scholar 

  4. Le Quéré, C. et al. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316, 1735–1738 (2007).

    Article  Google Scholar 

  5. Landschützer, P. et al. The reinvigoration of the Southern Ocean carbon sink. Science 349, 1221–1224 (2015).

    Article  Google Scholar 

  6. Munro, D. R. et al. Recent evidence for a strengthening CO sink in the Southern Ocean from carbonatesystem measurements in the Drake Passage (2002–2015). Geophys. Res. Lett. 42, 2015GL065194 (2015).

    Article  Google Scholar 

  7. Ritter, R. et al. Observation‐based trends of the Southern Ocean carbon sink. Geophys. Res. Lett. 44, 12339–12348 (2017).

    Article  Google Scholar 

  8. Lamy, F. et al. Holocene changes in the position and intensity of the Southern Westerly wind belt. Nat. Geosci. 3, 695–699 (2010).

    Article  Google Scholar 

  9. Sime, L. C. et al. Southern Hemisphere westerly wind changes during the Last Glacial Maximum: model–data comparison. Quat. Sci. Rev. 64, 104–120 (2013).

    Article  Google Scholar 

  10. Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323, 1443–1448 (2009).

    Article  Google Scholar 

  11. Lovenduski, N. S., Gruber, N. & Doney, S. C. Toward a mechanistic understanding of the decadal trends inthe Southern Ocean carbon sink. Glob. Biogeochem. Cycles 22, GB3016 (2008).

    Article  Google Scholar 

  12. Purich, A., Cai, W., England, M. H. & Cowan, T. Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes. Nat. Commun. 7, 10409 (2016).

    Article  Google Scholar 

  13. Wanninkhof, R. et al. Global ocean carbon uptake: magnitude, variability and trends.Biogeosciences 10, 1983–2000 (2013).

    Article  Google Scholar 

  14. Kilian, R. & Lamy, F. A review of Glacial and Holocene paleoclimate records from southernmost Patagonia (49–55°S). Quat. Sci. Rev. 53, 1–23 (2012).

    Article  Google Scholar 

  15. Fontana, S. L. & Bennett, K. Postglacial vegetation dynamics of western Tierra del Fuego. Holocene 22, 1337–1350, (2012).

    Article  Google Scholar 

  16. Waldmann, N. et al. Integrated reconstruction of Holocene millennial-scale environmental changes in Tierra del Fuego, southernmost South America. Palaeogeogr. Palaeoclimatol. Palaeoecol. 399, 294–309 (2014).

    Article  Google Scholar 

  17. Moy, C. M. et al. Isotopic evidence for hydrologic change related to the westerlies in SW Patagonia, Chile during the last millennium. Quat. Sci. Rev. 27, 1335–1349 (2008).

    Article  Google Scholar 

  18. Bertrand, S., Hughen, K., Sepúlveda, J. & Pantoja, J. Late Holocene covariability of the southern westerlies and sea surface temperature in Northern Chilean Patagonia. Quat. Sci. Rev. 105, 195–208 (2014).

    Article  Google Scholar 

  19. Lamy, F. et al. Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304, 1959–1962 (2004).

    Article  Google Scholar 

  20. Strother, S. L. et al. Changes in Holocene vegetation, climate and the intensity of Southern Hemisphere Westerly Winds based on a high-resolution palynological record from sub-Antarctic South Georgia. Holocene 25, 263–279 (2015).

    Article  Google Scholar 

  21. Turney, C. S. M. et al. A 250-year periodicity in Southern Hemisphere westerly winds over the last 2600 years. Clim. Past 12, 189–200 (2016).

    Article  Google Scholar 

  22. Vanneste, H. et al. Late-glacial elevated dust deposition linked to westerly wind shifts in southern South America. Sci. Rep. 5, 11670 (2015).

    Article  Google Scholar 

  23. Sime, L. C. et al. Sea ice led to poleward-shifted winds at the Last Glacial Maximum: the influence of state dependency on CMIP5 and PMIP3 models. Clim. Past 12, 2241–2253 (2016).

    Article  Google Scholar 

  24. Climate Statistics for Australian Locations, Macquarie Island (Australian Government Bureau of Meterology, 2017); http://www.bom.gov.au/climate/averages/tables/cw_300004_All.shtml

  25. Saunders, K. M., Hodgson, D. A. & McMinn, A. Quantitative relationships between benthic diatom assemblages and water chemistry in Macquarie Island lakes and their potential to reconstruct past environmental changes. Antarct. Sci. 21, 35–49 (2009).

    Article  Google Scholar 

  26. Röthlisberger, R. et al. Dust and sea salt variability in central East Antarctica (Dome C) over the last 45 kyrs and its implications for southern high-latitude climate. Geophys. Res. Lett. 29, 24-1–24-4 (2002).

    Article  Google Scholar 

  27. Xiao, W., Esper, O. & Gersonde, R. Last Glacial-Holocene climate variability in the Atlantic sector of the Southern Ocean. Quat. Sci. Rev. 135, 115–137 (2016).

    Article  Google Scholar 

  28. Ferry, A. J. et al. First records of winter sea ice concentration in the southwest Pacific sector of the Southern Ocean. Paleoceanography 30, 1525–1539 (2015).

    Article  Google Scholar 

  29. Bianchi, C. & Gersonde, R. Climate evolution at the last deglaciation: the role of the Southern Ocean. Earth Planet. Sci. Lett. 228, 407–424 (2004).

    Article  Google Scholar 

  30. Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).

    Article  Google Scholar 

  31. Masson, V. et al. Holocene climate variability in Antarctica based on 11 ice-core isotope records. Quat. Res. 54, 348–358 (2000).

    Article  Google Scholar 

  32. Fletcher, M.-S., & Moreno, P. I. Zonally symmetric changes in the strength and position of the Southern Westerlies drove atmospheric CO2 variations over the past 14 k.y. Geology 39, 419–422 (2011).

    Article  Google Scholar 

  33. Moreno, P. I. et al. Onset and evolution of southern annular mode-like changes at centennial timescale. Sci. Rep. 8, 3458 (2018).

    Article  Google Scholar 

  34. Prebble, J. G. et al. Evidence for a Holocene Climatic Optimum in the southwest Pacific: a multiproxy study. Paleoceanography 32, 763–779 (2017).

    Article  Google Scholar 

  35. Röthlisberger, R. et al. EPICA Dome C Ice Core nss-Ca and Na Data. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2005-046 (NOAA/NGDC Paleoclimatology Program, 2005).

  36. Monnin, E. et al. Atmospheric CO2 concentrations over the Last Glacial Termination. Science 291, 112–114 (2001).

    Article  Google Scholar 

  37. Brovkin, V. et al. Comparative carbon cycle dynamics of the present and last interglacial.Quat. Sci. Rev. 137, 15–32 (2016).

    Article  Google Scholar 

  38. Stocker, B. D., Yu, Z., Massa, C. & Joos, F. Holocene peatland and ice-core data constraints on the timing and magnitude of CO2 emissions from past land use. Proc. Natl Acad. Sci. USA 114, 1492–1497 (2017).

    Article  Google Scholar 

  39. Saunders, K. M. et al. Ecosystem impacts of feral rabbits on World Heritage sub-Antarctic Macquarie Island: a palaeoecological perspective. Anthropocene 3, 1–8 (2013).

    Article  Google Scholar 

  40. Bracegirdle, T. J., Hyder, P. & Holmes, C. R. CMIP5 diversity in southern westerly jet projections related to historical sea ice area: Strong link to strengthening and weak link to shift. J. Clim. 31, 195–211 (2018).

    Article  Google Scholar 

  41. Wolff, E. W. et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440, 491–496 (2006).

    Article  Google Scholar 

  42. Bracegirdle, T. J. et al. Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. J. Geophys. Res. Atmos. 118, 547–562 (2013).

    Article  Google Scholar 

  43. Köhler, P., Fischer, H., Munhoven, G. & Zeebe, R. E. Quantitative interpretation of atmospheric carbon records over the last glacial termination. Glob. Biogeochem. Cycles 19, GB4020 (2005).

    Article  Google Scholar 

  44. Chavaillaz, Y., Codron, F. & Kageyama, M. Southern westerlies in LGM and future (RCP4.5) climates. Clim. Past 9, 517–524 (2013).

    Article  Google Scholar 

  45. Rojas, M. Sensitivity of Southern Hemisphere circulation to LGM and 4 × CO2 climates. Geophys. Res. Lett. 40, 965–970, (2013).

    Article  Google Scholar 

  46. Van Nieuwenhuyze, W. Reconstruction of Holocene Paleoenvironmental Changes in the Sub-Antarctic Region. PhD thesis, Univ. Ghent (2015).

  47. Davies, S. J., Lamb, H. F. & Roberts, S. J. in Micro-XRF Studies of Sediment Cores (eds Croudace I. W. & Rothwell R. G.) 189–226 (Springer, Dordrecht, 2015).

  48. Heimburger, A., Losno, R., Triquet, S. & Nguyen, E. B. Atmospheric deposition fluxes of 26 elements over the Southern Indian Ocean: time series on Kerguelen and Crozet Islands. Glob. Biogeochem. Cycles 27, 440–449 (2013).

    Article  Google Scholar 

  49. Butz, C. et al. Hyperspectral imaging spectroscopy: a promising method for the biogeochemical analysis of lake sediments. J. Appl. Remote Sens. 9, 096031 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by NERC Standard grant NE/K004514/1 (D.A.H., S.J.R., L.S.), Swiss National Science Foundation Ambizione Postdoctoral Research Fellowship PZ00P2_136835/1 (K.M.S.), Swiss National Science Foundation Grant 200021_172586 (M.G.) and Australian Antarctic Science grants 3117 and 4156 (K.M.S.). K.M.S. was also supported by PhD funding as part of grant 2663 to A. McMinn, an Australian Postgraduate Award (2004–2008) and an Australian Institute of Nuclear Science and Engineering Postgraduate Research Award. The Australian Antarctic Division and the Parks and Wildlife Service Tasmania provided logistical support and access to the Macquarie Island World Heritage Area. Field support was provided by A. O’Hern, A. Wakefield, C. Oosthuizen, B. Arthur, J. van Dorst, J. Pitcher, S. Williams, T. Blyth and Parks and Wildlife Service Rangers and volunteers. We thank H. Lu of the British Antarctic Survey for providing and adapting MATLAB scripts for sequential Mann-Kendall test analyses, A. Whittle for processing the wind data and underlying geotifs in Fig. 1a and b, and D. Fischer, S. Arcusa and N. Tunstall for technical support.

Author information

Authors and Affiliations

Authors

Contributions

D.A.H., K.M.S. and S.J.R. contributed equally to this work. Fieldwork was carried out by K.M.S., D.A.H., S.J.R. and W.V.N. Analytical work was performed by S.J.R. (μ-XRF, sedimentology, chronology and statistical analyses) and S.D. (μ-XRF), K.M.S. and B.P. (D-I conductivity analyses, chronology and sedimentology), W.V.N. (fieldwork and diatom analysis), K.M.S., C.B. and M.G. (hyperspectral imaging) and L.S. (modelling). D.A.H., K.M.S., S.J.R. and B.P. wrote the manuscript and Supplementary Information with input from all authors.

Corresponding author

Correspondence to Krystyna M. Saunders.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saunders, K.M., Roberts, S.J., Perren, B. et al. Holocene dynamics of the Southern Hemisphere westerly winds and possible links to CO2 outgassing. Nature Geosci 11, 650–655 (2018). https://doi.org/10.1038/s41561-018-0186-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0186-5

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene