Article | Published:

Riverine evidence for isotopic mass balance in the Earth’s early sulfur cycle

Nature Geosciencevolume 11pages661664 (2018) | Download Citation


During a time of negligible atmospheric pO2, Earth’s early sulfur cycle generated a spectacular geological signal seen as the anomalous fractionation of multiple sulfur isotopic ratios. The disappearance of this signal from the geologic record has been hypothesized to constrain the timing of atmospheric oxygenation, although interpretive challenges exist. Asymmetry in existing S isotopic data, for example, suggests that the Archaean crust was not mass balanced, with the implication that the loss of S isotope anomalies from the geologic record might lag the rise of atmospheric O2. Here, we present new S isotopic analyses of modern surface and groundwaters that drain Archaean terrains in order to independently evaluate Archaean S cycle mass balance. Natural waters contain sulfur derived from the underlying bedrock and thus can be used to ascertain its S isotopic composition at scales larger than typical geological samples allow. Analyses of 52 water samples from Canada and South Africa suggest that the Archaean crust was mass balanced with an average multiple S isotopic composition equivalent to the bulk Earth. Overall, our work supports the hypothesis that the disappearance of multiple S isotope anomalies from the sedimentary record provides a robust proxy for the timing of the first rise in atmospheric O2.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

  2. 2.

    Luo, G. et al. Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Sci. Adv. 2, e1600134 (2016).

  3. 3.

    Pavlov, A. & Kasting, J. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002).

  4. 4.

    Labidi, J., Cartigny, P. & Moreira, M. Non-chondritic sulphur isotope composition of the terrestrial mantle. Nature 501, 208–211 (2013).

  5. 5.

    Wing, B. A. & Farquhar, J. Sulfur isotope homogeneity of lunar mare basalts. Geochim. Cosmochim. Acta 170, 266–280 (2015).

  6. 6.

    Farquhar, J. & Wing, B. A. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213, 1–13 (2003).

  7. 7.

    Reinhard, C. T., Planavsky, N. J. & Lyons, T. W. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497, 100–103 (2013).

  8. 8.

    Cabral, R. A. et al. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature 496, 490–493 (2013).

  9. 9.

    Keller, C. B. & Schoene, B. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature 485, 490–493 (2012).

  10. 10.

    Partridge, M. A., Golding, S. D., Baublys, K. A. & Young, E. Pyrite paragenesis and multiple sulfur isotope distribution in late Archean and early Paleoproterozoic Hamersley Basin sediments. Earth Planet. Sci. Lett. 272, 41–49 (2008).

  11. 11.

    Ono, S., Beukes, N. J. & Rumble, D. Origin of two distinct multiple-sulfur isotope compositions of pyrite in the 2.5 Ga Klein Naute Formation, Griqualand West Basin, South Africa. Precambrian Res. 169, 48–57 (2009).

  12. 12.

    Farquhar, J. et al. Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes. Proc. Natl Acad. Sci. USA 110, 17638–17643 (2013).

  13. 13.

    Fischer, W. W. et al. SQUID–SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle. Proc. Natl Acad. Sci. USA 111, 5468–5473 (2014).

  14. 14.

    Gaillardet, J., Viers, J. & Dupré, B. Trace elements in river waters. Treatise Geochem. 5, 225–272 (2003).

  15. 15.

    Johnson, J. E., Gerpheide, a, Lamb, M. P. & Fischer, W. W. O2 constraints from Paleoproterozoic detrital pyrite and uraninite. Geol. Soc. Am. Bull. 126, 813–830 (2014).

  16. 16.

    Li, L. et al. Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks. Nat. Commun. 7, 13252 (2016).

  17. 17.

    Turchyn, A. V., Tipper, E. T., Galy, A., Lo, J. K. & Bickle, M. J. Isotope evidence for secondary sulfide precipitation along the Marsyandi River, Nepal, Himalayas. Earth Planet. Sci. Lett. 374, 36–46 (2013).

  18. 18.

    Johnston, D. T. Multiple sulfur isotopes and the evolution of Earth’s surface sulfur cycle. Earth Sci. Rev. 106, 161–183 (2011).

  19. 19.

    Bekker, A. et al. Atmospheric sulfur in Archean komatiite-hosted nickel deposits. Science 326, 1086–1089 (2009).

  20. 20.

    Goodwin, A. M. Principles of Precambrian Geology (Academic Press, London, San Diego, 1996).

  21. 21.

    Halevy, I., Johnston, D. T. & Schrag, D. P. Explaining the structure of the Archean mass-independent sulfur isotope record. Science 329, 204–207 (2010).

  22. 22.

    Paris, G., Sessions, A. L., Subhas, A. V. & Adkins, J. F. MC-ICP-MS measurement of δ 34S and Δ33S in small amounts of dissolved sulfate. Chem. Geol. 345, 50–61 (2013).

  23. 23.

    Paris, G., Adkins, J. F., Sessions, A. L., Webb, S. M. & Fischer, W. W. Neoarchean carbonate-associated sulfate records positive 33S anomalies. Science 346, 739–742 (2014).

  24. 24.

    Stallard, R. & Edmond, J. Geochemistry of the Amazon 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. J. Geophys. Res. 86, 9844–9858 (1981).

  25. 25.

    Price, J. R. & Szymanski, D. W. The effects of road salt on stream water chemistry in two small forested watersheds, Catoctin Mountain, Maryland, USA. Aquat. Geochem. 20, 243–265 (2014).

  26. 26.

    Baroni, M., Thiemens, M. H., Delmas, R. J. & Savarino, J. Mass-independent sulfur isotopic compositions in stratospheric volcanic eruptions. Science 315, 84–87 (2007).

  27. 27.

    Nriagu, J. O. & Coker, R. D. Isotopic composition of sulfur in precipitation within the Great Lakes Basin. Tellus A 2826, 365–375 (1978).

  28. 28.

    Caron, F., Tessier, A., Kramer, J. R., Schwarcz, H. P. & Rees, C. E. Sulfur and oxygen isotopes of sulfate in precipitation and lakewater, Quebec, Canada. Appl. Geochem. 1, 601–606 (1986).

Download references


M.A.T. acknowledges support from the Caltech Texaco Postdoctoral fellowship and the California Alliance for Graduate Education and the Professoriate (AGEP). This work was supported from funds supplied by the David and Lucile Packard Foundation, a Caltech GPS Division Discovery Award (W.W.F), and a grant from the National Science Foundation (EAR-1349858) to W.W.F and J.F.A. This project benefited from the use of instrumentation made available by the Caltech Environmental Analysis Center. All authors acknowledge helpful comments provided by B. Wing on an earlier draft of this manuscript.

Author information


  1. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA

    • Mark A. Torres
    • , Guillaume Paris
    • , Jess F. Adkins
    •  & Woodward W. Fischer
  2. Department of Earth, Environmental, and Planetary Sciences, Rice University, Houston, TX, USA

    • Mark A. Torres
  3. CRPG, UMR 7358 CNRS-Université de Lorraine, Vandœuvre-lès-Nancy, France

    • Guillaume Paris


  1. Search for Mark A. Torres in:

  2. Search for Guillaume Paris in:

  3. Search for Jess F. Adkins in:

  4. Search for Woodward W. Fischer in:


G.P. and M.A.T conducted the laboratory analyses. All authors contributed to the sample collection, data analysis and manuscript preparation.

Competing interests

The authors have no competing interests.

Corresponding author

Correspondence to Mark A. Torres.

Supplementary information

About this article

Publication history





Further reading