Article | Published:

Transient temperature asymmetry between hemispheres in the Palaeogene Atlantic Ocean

Nature Geosciencevolume 11pages656660 (2018) | Download Citation


During the Late Palaeogene between ~40 and 23 million years ago (Ma), Earth transitioned from a warm non-glaciated climate state and developed large dynamic ice sheets on Antarctica. This transition is largely inferred from the deep-sea oxygen isotope record because records from independent temperature proxies are sparse. Here we present a 25-million-year-long alkenone-based record of surface temperature change from the North Atlantic Ocean. Our long temperature record documents peak warmth (~29 °C) during the middle Eocene, a slow overall decline to the Eocene/Oligocene transition (EOT, ~34 Ma) and high-amplitude variability (between ~28 and 24 °C) during the Oligo–Miocene. The overall structure of the record is similar to that of the deep-sea record, but a distinct anomaly is also evident. We find no evidence of surface cooling in the North Atlantic directly coinciding with the EOT when Antarctica first became cold enough to sustain large ice sheets and subantarctic waters cooled substantially. Surface ocean cooling during the EOT was therefore strongly asymmetric between hemispheres. This transient thermal decoupling of the North Atlantic Ocean from the southern high latitudes suggests that Antarctic glaciation triggered changes in ocean circulation-driven heat transport and influenced the far-field climate response.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Liebrand, D. et al. Evolution of the early Antarctic ice ages. Proc. Natl Acad. Sci. USA 114, 3867–3872 (2017).

  2. 2.

    Zachos, J. C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

  3. 3.

    Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E. & Miller, K. G. Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 24, PA4216 (2009).

  4. 4.

    Pälike, H. et al. The heartbeat of the Oligocene climate system. Science 314, 1894–1898 (2006).

  5. 5.

    Miller, K. G., Wright, J. D. & Fairbanks, R. G. Unlocking the ice house: Oligocene–Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res. 96, 6829–6848 (1991).

  6. 6.

    Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H. & Backman, J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53–57 (2005).

  7. 7.

    Pearson, P. N., Foster, G. L. & Wade, B. S. Atmospheric carbon dioxide through the Eocene–Oligocene climate transition. Nature 461, 1110–1113 (2009).

  8. 8.

    Pagani, M. et al. The role of carbon dioxide during the onset of Antarctic glaciation. Science 334, 1261–1264 (2011).

  9. 9.

    Liu, Z. et al. Global cooling during the Eocene-Oligocene climate transition. Science 323, 1187–1190 (2009).

  10. 10.

    Hyeong, K., Huroda, J., Seo, I. & Wilson, P. A. Response of the Pacific inter-tropical convergence zone to global cooling and initiation of Antarctic glaciation across the Eocene Oligocene Transition. Sci. Rep. 6, 30647 (2016).

  11. 11.

    Elsworth, G., Galbraith, E., Halverson, G. & Yang, S. Enhanced weathering and CO2 drawdown caused by latest Eocene strengthening of the Atlantic meridional overturning circulation. Nat. Geosci. 10, 213–216 (2017).

  12. 12.

    Abelson, M. & Erez, L. The onset of modern-like Atlantic meridional overturning circulation at the Eocene-Oligocene transition: evidence, causes, and possible implications for global cooling. Geochem. Geophys. Geosyst. 18, 2177–2199 (2017).

  13. 13.

    Coxall, H. K. et al. Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation. Nat. Geosci. 11, 190–196 (2018).

  14. 14.

    Scher, H. D. et al. Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies. Nature 523, 580–583 (2015).

  15. 15.

    Katz, M. E. et al. Impact of Antarctic circumpolar current development on Late Paleogene ocean structure. Science 332, 1076–1079 (2011).

  16. 16.

    Norris, R. D. et al. Marine ecosystem responses to Cenozoic global change. Science 341, 492–498 (2013).

  17. 17.

    Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000).

  18. 18.

    Kennett, J. P. Cenozoic evolution of Antarctic glaciations, the circum-Antarctic ocean and their impact on global paleoceanography. J. Geophys. Res. 82, 3843–3860 (1977).

  19. 19.

    DeConto, R. M. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421, 245–249 (2003).

  20. 20.

    Tremblin, M., Hermoso, M. & Minoletti, F. Equatorial heat accumulation as a long-term trigger of permanent Antarctic ice sheets during the Cenozoic. Proc. Natl Acad. Sci. USA 113, 11782–11787 (2016).

  21. 21.

    Goldner, A., Herold, N. & Huber, M. Antarctic glaciation caused ocean circulation changes at the Eocene–Oligocene transition. Nature 511, 574–577 (2014).

  22. 22.

    Miller, K. G. & Tucholke, B. E. in Structure and Development of the Greenland-Scotland Ridge (eds Bott, M. H. P., Saxov, S., Talwani, M. & Thiede, J.) 549–589 (Plenum, New York, 1983).

  23. 23.

    Zanazzi, A., Kohn, M. J., MacFadden, B. J. & Terry, D. O. Large temperature drop across the Eocene-Oligocene transition in central North America. Nature 445, 639–642 (2007).

  24. 24.

    Schouten, S. et al. Onset of long-term cooling of Greenland near the Eocene-Oligocene boundary as revealed by branched tetraether lipids. Geology 36, 147–150 (2008).

  25. 25.

    Expedition 342 Scientists. Integrated Ocean Drilling Program Expedition 342 Preliminary Report: Paleogene Newfoundland Sediment Drifts (IODP, 2012);

  26. 26.

    Vellinga, M. & Wood, R. A. Impacts of thermohaline circulation shutdown in the twenty-first century. Climatic Change 91, 43–63 (2008).

  27. 27.

    Stouffer, R. J. et al. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Clim. 19, 1365–1387 (2006).

  28. 28.

    Matthews, K. J. et al. Global plate boundary evolution and kinematics since the late Paleozoic. Global Planet. Change 146, 226–250 (2016).

  29. 29.

    Weller, P. & Stein, R. Paleogene biomarker records from the central Arctic Ocean (Integrated Ocean Drilling Program Expedition 302): organic carbon sources, anoxia, and sea surface temperature. Paleoceanography 23, PA1S17 (2008).

  30. 30.

    Bijl, P. K. et al. Transient middle Eocene atmospheric CO2 and temperature variations. Science 330, 819–821 (2010).

  31. 31.

    Plancq, J., Mattioli, E., Pittet, B., Simon, L. & Grossi, V. Productivity and sea-surface temperature changes recorded during the late Eocene-early Oligocene at DSDP Site 511 (South Atlantic). Palaeogeogr. Palaeoclimatol. Palaeoecol. 407, 34–44 (2014).

  32. 32.

    Conte, M. H. et al. Global temperature calibration of the alkenone unsaturation index (UK’ 37) in surface waters and comparison with surface sediments. Geochem. Geophys. Geosyst. 7, Q02005 (2006).

  33. 33.

    Palter, J. B., Lozier, M. S. & Barber, R. T. The effect of advection on the nutrient reservoir in the North Atlantic subtropical gyre. Nature 437, 687–692 (2005).

  34. 34.

    Bijl, P. K. et al. Early Palaeogene temperature evolution of the southwest Pacific Ocean. Nature 461, 776–779 (2009).

  35. 35.

    Zachos, J. C., Stott, L. D. & Lohmann, K. C. Evolution of early Cenozoic marine temperatures. Paleoceanography 9, 353–387 (1994).

  36. 36.

    Bernard, S., Daval, D., Ackerer, P., Pont, S. & Meibom, A. Burial-induced oxygen-isotope re-equilibration of fossil foraminifera explains ocean paleotemperature paradoxes. Nat. Commun. 8, 1134 (2017).

  37. 37.

    Stap, L. B., van de Wal, R. S. W., de Boer, B., Bintanja, R. & Lourens, L. The influence of ice sheets on temperature during the past 38 million years inferred from a one-dimensional ice sheet–climate model. Clim. Past. 13, 1243–1257 (2017).

  38. 38.

    Pound, M. J. & Salzmann, U. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition. Sci. Rep. 7, 43386 (2017).

  39. 39.

    Yang, S., Galbraith, E. & Palter, J. Coupled climate impacts of the Drake Passage and the Panama Seaway. Clim. Dyn. 43, 37–52 (2014).

  40. 40.

    Ladant, J.-B., Donnadieu, Y., Bopp, L., Lear, C. H. & Wilson, P. A. Meridional contrasts in productivity changes driven by the opening of Drake Passage. Paleoceanogr. Paleoclimatol. 33, 302–317 (2018).

  41. 41.

    Hutchinson, D. K. et al. Climate sensitivity and meridional overturning circulation in the late Eocene using GFDL CM2.1. Clim. Past 14, 789–810 (2018).

  42. 42.

    Norris, R. D. et al. Site U1404. In Proc. Integrated Ocean Drilling Program (eds Norris, R. D., Wilson, P. A., Blum, P. & Expedition 342 Scientists) Vol. 342 (Integrated Ocean Drilling Program, 2014);

  43. 43.

    Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).

  44. 44.

    Gradstein, F. M., Ogg, J. G., Schmitz, M. & Ogg, G. The Geologic Time Scale 2012 (Elsevier, Amsterdam, 2012).

  45. 45.

    Prahl, F. G., Muehlhausen, L. A. & Zahnle, D. L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim. Cosmochim. Acta 52, 2303–2310 (1988).

  46. 46.

    Villanueva, J. & Grimalt, J. O. Gas chromatographic tuning of the UK’ 37 paleothermometer. Anal. Chem. 69, 3329–3332 (1997).

  47. 47.

    Brassell, S. C., Eglinton, G., Marlowe, I. T., Pflaumann, U. & Sarnthein, M. Molecular stratigraphy: a new tool for climatic assessment. Nature 320, 129–133 (1986).

  48. 48.

    Lawrence, K. T., Liu, Z. & Herbert, T. D. Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation. Science 312, 79–83 (2006).

  49. 49.

    Müller, P. J., Kirst, G., Rohland, G., von Storch, I. & Rosell-Melé, A. Calibration of the alkenone paleotemperature index UK’ 37 based on core-tops from the eastern South Atlantic and the global ocean (60°N–60°S). Geochim. Cosmochim. Acta 62, 1757–1772 (1998).

  50. 50.

    Hohbein, M. W., Sexton, P. F. & Cartwright, J. A. Onset of North Atlantic Deep Water production coincident with inception of the Cenozoic global cooling trend. Geology 40, 255–258 (2012).

  51. 51.

    Abelson, M., Agnon, A. & Almogi-Labin, A. Indications for control of the Iceland plume on the Eocene-Oligocene “greenhouse-icehouse” climate transition. Earth Planet. Sci. Lett. 265, 33–48 (2008).

  52. 52.

    Liu, W. et al. Late Miocene episodic lakes in the arid Tarim Basin, western China. Proc. Natl Acad. Sci. USA 111, 16292–16296 (2014).

  53. 53.

    Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).

  54. 54.

    Locarnini, R. A. et al. World Ocean Atlas 2013, Volume 1: Temperature. In NOAA Atlas NESDIS 73 (eds Levitus, S. & Mishonov, A.) Vol. 73 (National Oceanographical Data Center, Silver Spring, 2013).

  55. 55.

    Schlitzer, R. Data analysis and visualization with Ocean Data View. CMOS Bull. SCMO 43, 9–13 (2015).

Download references


We dedicate this contribution to M. Pagani. This research used samples provided by the Integrated Ocean Drilling Program (IODP), which is sponsored by the US National Science Foundation and participating countries under management of Joint Oceanographic Institutions, Inc. We thank the scientists, technicians and support staff of IODP Expedition 342, IODP China and IODP UK for support. This research was supported by National Key Research and Development Program of China (2016YFE0109500), National Natural Science Foundation of China (41420104008), Chinese Academy of Sciences (QYZDY-SSW-DQC001, ZDBS-SSW-DQC001) (to W.L and Z.L.), Hong Kong Research Grant Council Grant 17303614 (to Z.L.), UK Natural Environment Research Council (NERC) Grant NE/L007452/1 (to S.M.B), NERC Grant NE/K014137/1 (to P.A.W.) and a Royal Society Wolfson award (to P.A.W.). We thank H. Coxall for a thorough and constructive review.

Author information


  1. Department of Earth Sciences, The University of Hong Kong, Hong Kong, China

    • Zhonghui Liu
    •  & Yiqing Jiang
  2. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China

    • Zhonghui Liu
    • , Huanye Wang
    •  & Weiguo Liu
  3. School of Earth Sciences, Zhejiang University, Hangzhou, China

    • Yuxin He
  4. National Oceanography Centre Southampton, University of Southampton, Southampton, UK

    • Steven M. Bohaty
    •  & Paul A. Wilson


  1. Search for Zhonghui Liu in:

  2. Search for Yuxin He in:

  3. Search for Yiqing Jiang in:

  4. Search for Huanye Wang in:

  5. Search for Weiguo Liu in:

  6. Search for Steven M. Bohaty in:

  7. Search for Paul A. Wilson in:


P.A.W. and Z.L. participated in IODP Expedition 342 in seagoing capacities. Z.L., S.M.B and P.A.W. conceived the idea of generating a Late Palaeogene temperature record. Y.H. and Y.J. performed alkenone analysis while H.W. and W.L. completed carbonate oxygen isotope work. Z.L. and P.A.W. led the writing of the manuscript with intellectual contributions from all co-authors.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Zhonghui Liu or Paul A. Wilson.

Supplementary information

About this article

Publication history




Issue Date


Further reading