Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-organization of a biogeomorphic landscape controlled by plant life-history traits

Abstract

Feedbacks between geomorphology and plants are increasingly recognized as key drivers shaping a variety of landscapes. Most studies of biogeomorphic interactions have focused on the influence of physical plant characteristics, such as stem and root density, on landscape morphodynamics without considering the role of life-history traits. However, pioneer plants can have very different colonization behaviours. Fast colonizers are characterized by a high number of establishing seedlings that produce homogenous vegetation patterns. In contrast, slow colonizers are characterized by a low number of establishing seedlings that are able to expand laterally, resulting in patchy vegetation patterns. Here we combine biogeomorphic model simulations and field observations in the Western Scheldt Estuary, the Netherlands, to show that colonization behaviour can influence the evolution of wetland landscapes. We find that colonization by fast colonizers favours stabilization of pre-existing channels and consolidation of the landscape configuration. In contrast, colonization by slow colonizers facilitates the formation of new channels and thereby actively facilitates further landscape self-organization. Our findings underline the key role of life-history traits in steering landscape self-organization across different biogeomorphic systems, and potentially the long-term resilience of these landscapes to disturbances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: False-colour aerial images showing the vegetation and channel development at reference field sites.
Fig. 2: Numerical model results (N1) show the development of vegetation cover and mUPL over a five-year simulation period for fast and slow colonizers.
Fig. 3: Numerical model results (N2) disentangling the effect of life-history strategies and physical plant properties for Spartina.
Fig. 4: Numerical model results (N2) disentangling the effect of life-history strategies and physical plant properties for Salicornia.
Fig. 5: Conceptual models showing equivalent timescales between vegetation colonization and morphological development are required for the emergence of self-organized dynamics.

Similar content being viewed by others

References

  1. Tal, M. & Paola, C. Dynamic single-thread channels maintained by the interaction of flow and vegetation. Geology 35, 347–350 (2007).

    Article  Google Scholar 

  2. Gibling, M. R. & Davies, N. S. Palaeozoic landscapes shaped by plant evolution. Nat. Geosci. 5, 99–105 (2012).

    Article  Google Scholar 

  3. Braudrick, C. A., Dietrich, W. E., Leverich, G. T. & Sklar, L. S. Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers. Proc. Natl Acad. Sci. USA 106, 16936–16941 (2009).

    Article  Google Scholar 

  4. Temmerman, S. et al. Vegetation causes channel erosion in a tidal landscape. Geology 35, 631–634 (2007).

    Article  Google Scholar 

  5. Kearney, W. S. et al. Salt marsh vegetation promotes efficient tidal channel networks. Nat. Commun. 7, 12287 (2016).

    Article  Google Scholar 

  6. Schwarz, C. et al. Impacts of salt marsh plants on tidal channel initiation and inheritance. J. Geophys. Res. Earth Surf. 119, 385–400 (2014).

    Article  Google Scholar 

  7. Collins, D. B. G., Bras, R. L. & Tucker, G. E. Modeling the effects of vegetation–erosion coupling on landscape evolution. J. Geophys. Res. 109, F03004 (2004).

    Google Scholar 

  8. Saco, P. M. & Moreno-de las Heras, M. Ecogeomorphic coevolution of semiarid hillslopes: emergence of banded and striped vegetation patterns through interaction of biotic and abiotic processes. Water Resour. Res. 49, 115–126 (2013).

    Article  Google Scholar 

  9. Corenblit, D. et al. Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: a review of foundation concepts and current understandings. Earth Sci. Rev. 106, 307–331 (2011).

    Article  Google Scholar 

  10. van de Koppel, J., Bouma, T. J. & Herman, P. M. J. The influence of local- and landscape-scale processes on spatial self-organization in estuarine ecosystems. J. Exp. Biol. 215, 962–967 (2012).

    Article  Google Scholar 

  11. Ganju, N. K. et al. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nat. Commun. 8, 14156 (2017).

    Article  Google Scholar 

  12. Schwarz, C. et al. On the potential of plant species invasion influencing bio-geomorphologic landscape formation in salt marshes. Earth Surf. Process. Landf. 41, 2047–2057 (2016).

    Article  Google Scholar 

  13. van Maanen, B., Coco, G. & Bryan, K. R. Modelling the effects of tidal range and initial bathymetry on the morphological evolution of tidal embayments. Geomorphology 191, 23–34 (2013).

    Article  Google Scholar 

  14. Fagherazzi, S. et al. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Rev. Geophys. 50, RG1002 (2012).

    Article  Google Scholar 

  15. van Wesenbeeck, B. K., van de Koppel, J., Herman, P. M. J. & Bouma, T. J. Does scale dependent feedback explain spatial complexity in salt marsh ecosystems? Oikos 117, 152–159 (2008).

    Article  Google Scholar 

  16. Bouma, T. J. et al. Spatial flow and sedimentation patterns within patches of epibenthic structures: combining field, flume and modelling experiments. Cont. Shelf Res. 27, 1020–1045 (2007).

    Article  Google Scholar 

  17. Bouma, T. J. et al. Organism traits determine the strength of scale-dependent bio-geomorphic feedbacks: a flume study on three intertidal plant species. Geomorphology 180, 57–65 (2013).

    Article  Google Scholar 

  18. Vandenbruwaene, W. et al. Flow interaction with dynamic vegetation patches: implications for biogeomorphic evolution of a tidal landscape. J. Geophys. Res. Earth Surf. 116, F01008 (2011).

    Article  Google Scholar 

  19. Bouma, T. J. et al. Density-dependent linkage of scale-dependent feedbacks: a flume study on the intertidal macrophyte Spartina anglica. Oikos 118, 260–268 (2009).

    Article  Google Scholar 

  20. Friess, D. A. et al. Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems. Biol. Rev. 87, 346–366 (2012).

    Article  Google Scholar 

  21. Huston, M. & Smith, T. Plant succession: life history and competition. Am. Nat. 130, 168–198 (1987).

    Article  Google Scholar 

  22. Heukels, H., van der Meijden, R. & Bruinsma, J. Heukels’ Flora van Nederland (Wolters-Noordhoff, Groningen, 1990).

  23. Wolters, M., Garbutt, A., Bekker, R. M., Bakker, J. P. & Carey, P. D. Restoration of salt-marsh vegetation in relation to site suitability, species pool and dispersal traits. J. Appl. Ecol. 45, 904–912 (2007).

    Article  Google Scholar 

  24. Author, S., Marks, T. C. & Truscott, A. J. Variation in seed production and germination of Spartina anglica within a zoned salt marsh. Source J. Ecol. J. Ecol. 73, 695–705 (1985).

    Google Scholar 

  25. van der Wal, D., Wielemaker-Van den Dool, A. & Herman, P. M. J. J. Spatial patterns, rates and mechanisms of saltmarsh cycles (Westerschelde, The Netherlands). Estuar. Coast. Shelf Sci. 76, 357–368 (2008).

    Article  Google Scholar 

  26. Balke, T. et al. Conditional outcome of ecosystem engineering: a case study on tussocks of the salt marsh pioneer Spartina anglica. Geomorphology 153, 232–238 (2012).

    Article  Google Scholar 

  27. Silvestri, S., Defina, A. & Marani, M. Tidal regime, salinity and salt marsh plant zonation. Estuar. Coast. Shelf Sci. 62, 119–130 (2005).

    Article  Google Scholar 

  28. Bertness, M. D. Zonation of Spartina patens and Spartina alterniflora in a New England salt marsh. Ecology 72, 138–148 (1991).

    Article  Google Scholar 

  29. Davy, A. J., Brown, M. J. H., Mossman, H. L. & Grant, A. Colonization of a newly developing salt marsh: disentangling independent effects of elevation and redox potential on halophytes. J. Ecol. 99, 1350–1357 (2011).

    Article  Google Scholar 

  30. Villaret, C., Hervouet, J.-M., Kopmann, R., Merkel, U. & Davies, A. G. Morphodynamic modeling using the Telemac finite-element system. Comput. Geosci. 53, 105–113 (2013).

    Article  Google Scholar 

  31. Van Rijn, L. C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas (Aqua Publications, Amsterdam, 1993).

  32. Temmerman, S., Govers, G., Wartel, S. & Meire, P. Modelling estuarine variations in tidal marsh sedimentation: response to changing sea level and suspended sediment concentrations. Mar. Geol. 212, 1–19 (2004).

    Article  Google Scholar 

  33. Callaghan, D. P. P. et al. Hydrodynamic forcing on salt-marsh development: distinguishing the relative importance of waves and tidal flows. Estuar. Coast. Shelf Sci. 89, 73–88 (2010).

    Article  Google Scholar 

  34. Baptist, M. J. et al. On inducing equations for vegetation resistance. J. Hydraul. Res. 45, 435–450 (2007).

    Article  Google Scholar 

  35. Schwarz, C. et al. Interactions between plant traits and sediment characteristics influencing species establishment and scale-dependent feedbacks in salt marsh ecosystems. Geomorphology 250, 298–307 (2015).

    Article  Google Scholar 

  36. Jia, M. et al. Monitoring loss and recovery of salt marshes in the Liao River Delta, China. J. Coast. Res. 300, 371–377 (2015).

    Article  Google Scholar 

  37. Nicholas, A. P. Modelling the continuum of river channel patterns. Earth Surf. Process. Landf. 38, 1187–1196 (2013).

    Article  Google Scholar 

  38. Corenblit, D. et al. Engineer pioneer plants respond to and affect geomorphic constraints similarly along water–terrestrial interfaces world-wide. Glob. Ecol. Biogeogr. 24, 1363–1376 (2015).

    Article  Google Scholar 

  39. Piliouras, A., Kim, W. & Carlson, B. Balancing aggradation and progradation on a vegetated delta: the importance of fluctuating discharge in depositional systems. J. Geophys. Res. Earth Surf. 122, 1882–1900 (2017).

    Article  Google Scholar 

  40. Bertoldi, W. et al. Modeling vegetation controls on fluvial morphological trajectories. Geophys. Res. Lett. 41, 7167–7175 (2014).

    Article  Google Scholar 

  41. Bouma, T. J. et al. Short-term mudflat dynamics drive long-term cyclic salt marsh dynamics. Limnol. Oceanogr. 61, 2261–2275 (2016).

    Article  Google Scholar 

  42. Adam, P. Saltmarsh Ecology (Cambridge Univ. Press, Cambridge, 1990).

  43. Marani, M., Lanzoni, S., Silvestri, S. & Rinaldo, A. Tidal landforms, patterns of halophytic vegetation and the fate of the lagoon of Venice. J. Mar. Syst. 51, 191–210 (2004).

    Article  Google Scholar 

  44. Shumway, S. W. & Bertness, M. D. Salt stress limitation of seedling recruitment in a salt marsh plant community. Oecologia 92, 490–497 (1992).

    Article  Google Scholar 

  45. van Ledden, M., van Kesteren, W. G. M. & Winterwerp, J. C. A conceptual framework for the erosion behaviour of sand–mud mixtures. Cont. Shelf Res. 24, 1–11 (2004).

    Article  Google Scholar 

  46. Vargas-Luna, A., Crosato, A., & Calvani, G. Representing plants as rigid cylinders in experiments and models.Adv. Water 93, 205–222 (2016).

    Article  Google Scholar 

  47. Nardin, W. & Edmonds, D. A. Optimum vegetation height and density for inorganic sedimentation in deltaic marshes. Nat. Geosci. 7, 722–726 (2014).

    Article  Google Scholar 

  48. Meire, D. W. S. A., Kondziolka, J. M. & Nepf, H. M. Interaction between neighboring vegetation patches: impact on flow and deposition. Water Resour. Res. 50, 3809–3825 (2014).

    Article  Google Scholar 

  49. Ungar, I. A. Population characteristics, growth, and survival of the halophyte Salicornia europaea. Ecology 68, 569–575 (1987).

    Article  Google Scholar 

  50. Schwanghart, W. & Kuhn, N. J. TopoToolbox: a set of Matlab functions for topographic analysis. Environ. Model. Softw. 25, 770–781 (2010).

    Article  Google Scholar 

  51. Marani, M., Lanzoni, S., Zandolin, D., Seminara, G. & Rinaldo, A. Tidal meanders. Water Resour. Res. 38, 1225 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Kleinhans for discussions on the evolution of vegetated landscapes under varying morphological development rates and H. Mariash for discussions on further implications of our findings. This research was partly supported by the Hedwige Prosper polder project financed by the Vlaams-Nederlandse Scheldecommissie (VNSC), Waterwegen & Zeekanaal (W&Z) and the Provincie Zeeland. The research presented here was partly supported by the Dutch Technology Foundation STW (Vici project 13709), which is part of the Netherlands Organisation for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs.

Author information

Authors and Affiliations

Authors

Contributions

C.S, O.G., N.C. and J.v.B. designed the model experiments and analysed the data. Z.Z., G.R. and J.v.d.K. contributed to interpreting the paper. C.S., S.T. and T.J.B. wrote the paper.

Corresponding author

Correspondence to Christian Schwarz.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables and Figures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwarz, C., Gourgue, O., van Belzen, J. et al. Self-organization of a biogeomorphic landscape controlled by plant life-history traits. Nature Geosci 11, 672–677 (2018). https://doi.org/10.1038/s41561-018-0180-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0180-y

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene