Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Continental break-up of the South China Sea stalled by far-field compression

Abstract

The outcome of decades of two-dimensional modelling of lithosphere deformation under extension is that mechanical coupling between the continental crust and the underlying mantle controls how a continent breaks apart to form a new ocean. However, geological observations unequivocally show that continental break-up propagates in the third dimension at rates that do not scale with the rate of opening. Here, we perform three-dimensional numerical simulations and compare them with observations from the South China Sea to show that tectonic loading in the direction of propagation exerts a first-order control on these propagation rates. The simulations show that, in the absence of compression in that direction, continental break-up propagates fast, forming narrow continental margins independently of the coupling. When compression is applied, propagation stagnates, forming V-shaped oceanic basins and wide margins. Changes in out-of-plane loading therefore explain the alternation of fast propagation and relative stagnation. These new dynamic constraints suggest that the west-to-east topographic gradient across the Indochinese Peninsula prevented continental break-up propagation through the 1,000-km-wide continental rift of the central and west basin of the South China Sea, until the direction of stretching changed 23 million years ago, resulting in bypassing and acceleration of continental break-up propagation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Continental break-up propagation models and observations.
Fig. 2: Modelling set-up and results in terms of margin width and propagation of continental break-up.
Fig. 3: Effect of rheology versus tectonic loading.
Fig. 4: Rifting and spreading history of the South China Sea

Similar content being viewed by others

References

  1. Mondy, L. S., Rey, P. F., Duclaux, G. & Moresi, L. The role of asthenospheric flow during rift propagation and breakup. Geology 46, 103–106 (2017).

    Article  Google Scholar 

  2. Hey, R., Duennebier, F. K. & Morgan, W. J. Propagating rifts on midocean ridges. J. Geophys. Res. 85, 3647–3658 (1980).

    Article  Google Scholar 

  3. Molnar, N. E., Cruden, A. R. & Betts, P. G. Interactions between propagating rotational rifts and linear rheological heterogeneities: insights from three‐dimensional laboratory experiments. Tectonics 36, 420–443 (2017).

    Article  Google Scholar 

  4. Briais, A., Patriat, P. & Tapponnier, P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia. J. Geophys. Res. 98, 6299–6328 (1993).

    Article  Google Scholar 

  5. Weissel, J. K. & Watts, A. B. Tectonic evolution of the Coral Sea Basin. J. Geophys. Res. 84, 4572–4582 (1979).

    Article  Google Scholar 

  6. Bulois, C., Pubellier, M., Chamot-Rooke, N. & Delescluse, M. Successive rifting events in marginal basins: the example of the Coral Sea region (Papua New Guinea). Tectonics 37, 3–29 (2017).

    Article  Google Scholar 

  7. Vink, G. E. Continental rifting and the implications for plate tectonic reconstructions. J. Geophys. Res. 87, 10677–10688 (1982).

    Article  Google Scholar 

  8. Buck, W. R. Modes of continental lithospheric extension. J. Geophys. Res. 96, 20161–20178 (1991).

    Article  Google Scholar 

  9. Huismans, R. & Beaumont, C. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature 473, 74–78 (2011).

    Article  Google Scholar 

  10. Brune, S., Heine, C., Clift, P. D. & Pérez-Gussinyé, M. Rifted margin architecture and crustal rheology: reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea. Mar. Pet. Geol. 79, 257–281 (2017).

    Article  Google Scholar 

  11. Van Wijk, J. W. & Blackman, D. K. Dynamics of continental rift propagation: the end-member modes. Earth Planet. Sci. Lett. 229, 247–258 (2005).

    Article  Google Scholar 

  12. Brune, S., Corti, G. & Ranalli, G. Controls of inherited lithospheric heterogeneity on rift linkage: numerical and analog models of interaction between the Kenyan and Ethiopian rifts across the Turkana depression. Tectonics 36, 1767–1786 (2017).

    Article  Google Scholar 

  13. Le Pourhiet, L., May, D. A., Huille, L., Watremez, L. & Leroy, S. A genetic link between transform and hyper-extended margins. Earth Planet. Sci. Lett. 465, 184–192 (2017).

    Article  Google Scholar 

  14. Liao, J. & Gerya, T. From continental rifting to seafloor spreading: insight from 3D thermo-mechanical modeling. Gondwana Res. 28, 1329–1343 (2015).

    Article  Google Scholar 

  15. Courtillot, V. Propagating rifts and continental breakup. Tectonics 1, 239–250 (1982).

    Article  Google Scholar 

  16. Morgan, J. P. & Parmentier, E. M. Causes and rate‐limiting mechanisms of ridge propagation: a fracture mechanics model. J. Geophys. Res. 90, 8603–8612 (1985).

    Article  Google Scholar 

  17. Buck, W. R. The role of magma in the development of the Afro-Arabian Rift System. Spec. Publ. Geol. Soc. Lond. 259, 43–54 (2006).

    Article  Google Scholar 

  18. Huet, B., Le Pourhiet, L., Labrousse, L., Burov, E. & Jolivet, L. Post-orogenic extension and metamorphic core complexes in a heterogeneous crust: the role of crustal layering inherited from collision. Application to the Cyclades (Aegean domain). Geophys. J. Int. 184, 611–625 (2011).

    Article  Google Scholar 

  19. Parsons, B. & Sclater, J. G. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res. 82, 803–827 (1977).

    Article  Google Scholar 

  20. Buck, W. R., Lavier, L. L. & Poliakov, A. N. How to make a rift wide. Philos. Trans. R. Soc. Lond. Ser. A 357, 671–689 (1999).

    Article  Google Scholar 

  21. McIntosh, K. et al. Crustal structure and inferred rifting processes in the northeast South China Sea. Mar. Pet. Geol. 58, 612–626 (2014).

    Article  Google Scholar 

  22. Hayes, D. E. & Nissen, S. S. The South China sea margins: implications for rifting contrasts. Earth Planet. Sci. Lett. 237, 601–616 (2005).

    Article  Google Scholar 

  23. Sibuet, J. C., Yeh, Y. C. & Lee, C. S. Geodynamics of the South China Sea. Tectonophysics 692, 98–119 (2016).

    Article  Google Scholar 

  24. Li, C. F. et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochem. Geophys. Geosyst. 15, 4958–4983 (2014).

    Article  Google Scholar 

  25. Franke, D. et al. The final rifting evolution in the South China Sea. Mar. Pet. Geol. 58, 704–720 (2014).

    Article  Google Scholar 

  26. Bird, P., Ben‐Avraham, Z., Schubert, G., Andreoli, M. & Viola, G. Patterns of stress and strain rate in southern Africa. J. Geophys. Res. 111, B08402 (2006).

    Article  Google Scholar 

  27. Stamps, D. S., Flesch, L. M. & Calais, E. Lithospheric buoyancy forces in Africa from a thin sheet approach. Int. J. Earth Sci. 99, 1525–1533 (2010).

    Article  Google Scholar 

  28. Ding, W. & Li, J. Propagated rifting in the Southwest Sub-basin, South China Sea: insights from analogue modelling. J. Geodyn. 100, 71–86 (2016).

    Article  Google Scholar 

  29. Pichot, T. et al. Deep crustal structure of the conjugate margins of the SW South China Sea from wide-angle refraction seismic data. Mar. Pet. Geol. 58, 627–643 (2014).

    Article  Google Scholar 

  30. Pubellier, M., Savva, D., Sapin, F. & Aurelio, M. Structural map of the South China Sea; scale 1:3M, Commission for the Geological Map of the World (CGMW, 2016); http://ccgm.org/en/home/183-structural-map-of-the-south-china-sea-9782917310342.html

  31. Taylor, B., Goodliffe, A., Martiniez, F. & Hey, R. Continental rifting and initial sea-floor spreading in the Woodlark Basin. Nature 374, 534–537 (1995).

    Article  Google Scholar 

  32. Taylor, B., Goodliffe, A. M. & Martinez, F. How continents break up: insights from Papua New Guinea. J. Geophys. Res. 104, 7497–7512 (1999).

    Article  Google Scholar 

  33. Nirrengarten, M., Manatschal, G., Tugend, J., Kusznir, N. J. & Sauter, D. Nature and origin of the J‐magnetic anomaly offshore Iberia–Newfoundland: implications for plate reconstructions. Terra Nova 29, 20–28 (2017).

    Article  Google Scholar 

  34. Allken, V., Huismans, R. S. & Thieulot, C. Factors controlling the mode of rift interaction in brittle–ductile coupled systems: a 3D numerical study. Geochem. Geophys. Geosyst. 13, Q05010 (2012).

    Article  Google Scholar 

  35. Zwaan, F., Schreurs, G., Naliboff, J. & Buiter, S. J. Insights into the effects of oblique extension on continental rift interaction from 3D analogue and numerical models. Tectonophysics 693, 239–260 (2016).

    Article  Google Scholar 

  36. May, D. A., Brown, J. & Le Pourhiet, L. pTatin3D: high-performance methods for long-term lithospheric dynamics. In Proc. International Conference for High Performance Computing, Networking, Storage and Analysis 274–284 (IEEE, 2014).

  37. May, D. A., Brown, J. & Le Pourhiet, L. A scalable, matrix-free multigrid preconditioner for finite element discretizations of heterogeneous Stokes flow. Comput. Methods Appl. Mech. Eng. 290, 496–523 (2015).

    Article  Google Scholar 

  38. Balay, S. et al. PETSc Users Manual Revision 3.3 (Computer Science Division, Argonne National Laboratory, 2012).

  39. Watremez, L. et al. Buoyancy and localizing properties of continental mantle lithosphere: insights from thermomechanical models of the eastern Gulf of Aden. Geochem. Geophys. Geosyst. 14, 2800–2817 (2013).

    Article  Google Scholar 

  40. Lemiale, V., Mühlhaus, H. B., Moresi, L. & Stafford, J. Shear banding analysis of plastic models formulated for incompressible viscous flows. Phys. Earth Planet. Inter. 171, 177–186 (2008).

    Article  Google Scholar 

  41. Lavier, L. L., Buck, W. R. & Poliakov, A. N. Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal faults. Geology 27, 1127–1130 (1999).

    Article  Google Scholar 

  42. Buck, W. R., Einarsson, P. & Brandsdóttir, B. Tectonic stress and magma chamber size as controls on dike propagation: constraints from the 1975–1984 Krafla rifting episode. J. Geophys. Res. 111, B12404 (2006).

    Article  Google Scholar 

  43. Amante, C. & Eakins. B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis NOAA Technical Memorandum NESDIS NGDC-24 (National Geophysical Data Center, NOAA, 2009); https://doi.org/10.7289/V5C8276M

Download references

Acknowledgements

Maps were realized with GMT, and post-processing with Paraview. L.L.P. acknowledges financial support from ERC Advanced Research Grant RHEOLITH (grant no. 290864). D.A.M. acknowledges financial support from FP7/2007–2013/ERC (grant no. 279925) and the Alfred P. Sloan Foundation through the Deep Carbon Observatory (DCO) ‘Modeling and Visualisation’ project.

Author information

Authors and Affiliations

Authors

Contributions

L.L.P. designed the experiments, analysed the results of the models and wrote the first draft of the paper. N.C.-R. drafted the map, discussed the timing of the anomaly and opening of the SCS. M.D. helped with the comparison with the refraction profile and M.P. discussed the geodynamic setting and geological arguments. D.A.M. set up the solver options to run the numerical code efficiently. L.W. discussed the results and participated in writing the paper.

Corresponding author

Correspondence to Laetitia Le Pourhiet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Video 1

Supplementary Video 1

Supplementary Video 2

Supplementary Video 2

Supplementary Video 3

Supplementary Video 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Pourhiet, L., Chamot-Rooke, N., Delescluse, M. et al. Continental break-up of the South China Sea stalled by far-field compression. Nature Geosci 11, 605–609 (2018). https://doi.org/10.1038/s41561-018-0178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0178-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing