Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Significant contribution of non-vascular vegetation to global rainfall interception


Non-vascular vegetation has been shown to capture considerable quantities of rainfall, which may affect the hydrological cycle and climate at continental scales. However, direct measurements of rainfall interception by non-vascular vegetation are confined to the local scale, which makes extrapolation to the global effects difficult. Here we use a process-based numerical simulation model to show that non-vascular vegetation contributes substantially to global rainfall interception. Inferred average global water storage capacity including non-vascular vegetation was 2.7 mm, which is consistent with field observations and markedly exceeds the values used in land surface models, which average around 0.4 mm. Consequently, we find that the total evaporation of free water from the forest canopy and soil surface increases by 61% when non-vascular vegetation is included, resulting in a global rainfall interception flux that is 22% of the terrestrial evaporative flux (compared with only 12% for simulations where interception excludes non-vascular vegetation). We thus conclude that non-vascular vegetation is likely to significantly influence global rainfall interception and evaporation with consequences for regional- to continental-scale hydrologic cycling and climate.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Interception of rainfall in the LiBry model.
Fig. 2: Global patterns of rainfall interception.
Fig. 3: Comparison of model estimates and field observations.


  1. 1.

    Lange, O. et al. Temperate rainforest lichens in New Zealand: high thallus water content can severely limit photosynthetic CO2 exchange. Oecologia 95, 303–313 (1993).

    Article  Google Scholar 

  2. 2.

    Veneklaas, E. J. et al. Hydrological properties of the epiphyte mass of a montane tropical rain forest, Colombia. Vegetatio 89, 183–192 (1990).

    Article  Google Scholar 

  3. 3.

    Proctor, M. C. F. et al. Desiccation-tolerance in bryophytes: a review. Bryologist 110, 595–621 (2007).

    Article  Google Scholar 

  4. 4.

    Kranner, I., Beckett, R., Hochman, A. & Nash, T. H. III Desiccation-tolerance in lichens: a review. Bryologist 111, 576–593 (2008).

    Article  Google Scholar 

  5. 5.

    Cornelissen, J. H. C., Lang, S. I., Soudzilovskaia, N. A. & During, H. J. Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann. Bot. 99, 987–1001 (2007).

    Article  Google Scholar 

  6. 6.

    Lakatos, M. in Plant Desiccation Tolerance (eds Lüttge, U., Beck, E. & Bartels, D.) Ch. 5 (Springer, Berlin, 2011)..

  7. 7.

    Van Stan, J. T. & Pypker, T. G. A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical enrichment of precipitation. Sci. Total Environ. 536, 813–824 (2015).

    Article  Google Scholar 

  8. 8.

    Savenije, H. H. G. The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrol. Process. 18, 1507–1511 (2004).

    Article  Google Scholar 

  9. 9.

    Davies-Barnard, T., Valdes, P. J., Jones, C. D. & Singarayer, J. S. Sensitivity of a coupled climate model to canopy interception capacity. Clim. Dyn. 42, 1715–1732 (2014).

    Article  Google Scholar 

  10. 10.

    Jarvis, A. Measuring and modelling the impact of land-use change in tropical hill-sides: the role of cloud interception to epiphytes. Adv. Environ. Monit. Model. 1, 118–148 (2000).

    Google Scholar 

  11. 11.

    Wang, B. et al. Effect of succession gaps on the understory water-holding capacity in an over-mature alpine forest at the upper reaches of the Yangtze River. Hydrol. Process. 30, 692–703 (2016).

    Article  Google Scholar 

  12. 12.

    Porada, P., Weber, B., Elbert, W., Pöschl, U. & Kleidon, A. Estimating global carbon uptake by lichens and bryophytes with a process-based model. Biogeosciences 10, 6989–7033 (2013).

    Article  Google Scholar 

  13. 13.

    Porada, P., Weber, B., Elbert, W., Pöschl, U. & Kleidon, A. Estimating impacts of lichens and bryophytes on global biogeochemical cycles. Global Biogeochem. Cycles 28, 71–85 (2014).

    Article  Google Scholar 

  14. 14.

    Teuling, A. J., Uijlenhoet, R., Van den Hurk, B. & Seneviratne, S. I. Parameter sensitivity in LSMs: an analysis using stochastic soil moisture models and ELDAS soil parameters. J. Hydrometeorol. 10, 751–765 (2009).

    Article  Google Scholar 

  15. 15.

    Murray, S. J. Trends in 20th century global rainfall interception as simulated by a dynamic global vegetation model: implications for global water resources. Ecohydrology 7, 102–114 (2014).

    Article  Google Scholar 

  16. 16.

    Van Stan, J. T. et al. Tillandsia usneoides (L.) L. (Spanish moss) water storage and leachate characteristics from two maritime oak forest settings. Ecohydrology 8, 988–1004 (2015).

    Article  Google Scholar 

  17. 17.

    Hölscher, D., Köhler, L., Van Dijk, A. I. J. M. & Bruijnzeel, L. A. The importance of epiphytes to total rainfall interception by a tropical montane rain forest in Costa Rica. J. Hydrol. 292, 308–322 (2004).

    Article  Google Scholar 

  18. 18.

    Miralles, D. G., Gash, J. H., Holmes, T. R. H., De Jeu, R. A. M. & Dolman, A. J. Global canopy interception from satellite observations. J. Geophys. Res. 115, D16122 (2010).

    Article  Google Scholar 

  19. 19.

    Wang-Erlandsson, L., van der Ent, R. J., Gordon, L. J. & Savenije, H. H. G. Contrasting roles of interception and transpiration in the hydrological cycle — Part 1: temporal characteristics over land. Earth Syst. Dynam. 5, 441–469 (2014).

    Article  Google Scholar 

  20. 20.

    Kürschner, H. & Parolly, G. Phytomass and water-storing capacity of epiphytic rain forest bryophyte communities in S Ecuador. Bot. Jahrb. 125, 489–504 (2004).

    Article  Google Scholar 

  21. 21.

    Shuttleworth, W. J. Macrohydrology: the new challenge for process hydrology. J. Hydrol. 100, 31–56 (1988).

    Article  Google Scholar 

  22. 22.

    Weedon, G. et al. Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeorol. 12, 823–848 (2011).

    Article  Google Scholar 

  23. 23.

    Makkink, G. F. Testing the Penman formula by means of lysimeters. J. Inst. Wat. Engrs. 11, 277–288 (1957).

    Google Scholar 

  24. 24.

    Porada, P., Pöschl, U., Kleidon, A., Beer, C. & Weber, B. Estimating global nitrous oxide emissions by lichens and bryophytes with a process-based productivity model. Biogeosciences 14, 1593–1602 (2017).

    Article  Google Scholar 

  25. 25.

    Monteith, J. Evaporation and surface temperature. Q. J. R. Meteorol. Soc. 107, 1–27 (1981).

    Article  Google Scholar 

  26. 26.

    Warrilow, D. A., Sangster, A. B. & Slingo, J. Modelling of Land Surface Processes and Their Influence on European Climate Technical Note DCTN 38 (Meteorological Office, 1986).

  27. 27.

    Porada, P., Ekici, A. & Beer, C. Effects of bryophyte and lichen cover on permafrost soil temperature at large scale. Cryosphere 10, 2291–2315 (2016).

    Article  Google Scholar 

  28. 28.

    Farquhar, G. & Von Caemmerer, S. in Encyclopedia of Plant Physiology Vol. 12 (eds Lange, O., Nobel, P., Osmond, C. & Ziegler, H.) 549–587 (Springer, Heidelberg, 1982).

  29. 29.

    Porada, P. et al. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician. Nat. Commun. 7, 12113 (2016).

    Article  Google Scholar 

  30. 30.

    Bonan, G. et al. The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J. Clim. 15, 3123–3149 (2002).

    Article  Google Scholar 

  31. 31.

    Miralles, D. G. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453–469 (2011).

    Article  Google Scholar 

  32. 32.

    Martens, B. GLEAMv3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).

    Article  Google Scholar 

  33. 33.

    Dahlman, L. & Palmqvist, K. Growth in two foliose tripartite lichens, Nephroma arcticum and Peltigera aphthosa: empirical modelling of external vs. internal factors. Funct. Ecol. 17, 821–831 (2003).

    Article  Google Scholar 

  34. 34.

    Gauslaa, Y. & Coxson, D. Interspecific and intraspecific variations in water storage in epiphytic old forest foliose lichens. Botany 89, 787–798 (2011).

    Article  Google Scholar 

  35. 35.

    Werner, F. A., Homeier, J., Oesker, M. & Boy, J. Epiphytic biomass of a tropical montane forest varies with topography. J. Trop. Ecol. 28, 23–31 (2012).

    Article  Google Scholar 

  36. 36.

    Fischer, T., Veste, M., Bens, O. & Hütt, R. F. Dew formation on the surface of biological soil crusts in central European sand ecosystems. Biogeosciences 9, 4621–4628 (2012).

    Article  Google Scholar 

  37. 37.

    Lidén, M., Jonsson-Cabrajic, A. V., Ottosson-Löfvenius, M., Palmqvist, K. & Lundmark, T. Species-specific activation time-lags can explain habitat restrictions in hydrophilic lichens. Plant Cell Environ. 33, 851–862 (2010).

    Google Scholar 

  38. 38.

    Olson, D. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).

    Article  Google Scholar 

Download references


The Bolin Centre for Climate Research is thanked for financial support. The Max Planck Institute for Biogeochemistry provided computational resources. P.P. acknowledges funding from the European Union FP7-ENV project PAGE21 under contract number GA282700. J.T.V.S. acknowledges funding from the United States National Science Foundation (EAR-1518726).

Author information




P.P., J.T.V.S. and A.K. designed the study. P.P. did the modelling analyses. P.P. and J.T.V.S. did the literature research for the model validation. P.P. and J.T.V.S. wrote the paper with input from A.K.

Corresponding author

Correspondence to Philipp Porada.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2; Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Porada, P., Van Stan, J.T. & Kleidon, A. Significant contribution of non-vascular vegetation to global rainfall interception. Nature Geosci 11, 563–567 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing