Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deglacial floods in the Beaufort Sea preceded Younger Dryas cooling


A period of cooling about 13,000 years ago interrupted about 2,000 years of deglacial warming. Known as the Younger Dryas (YD), the event is thought to have resulted from a slowdown of the Atlantic meridional overturning circulation in response to a sudden flood of Laurentide Ice Sheet meltwater that reached the Nordic Seas. Oxygen isotope evidence for a local source of meltwater to the open western North Atlantic from the Gulf of St Lawrence has been lacking. Here we report that the eastern Beaufort Sea contains the long-sought signal of 18O-depleted water. Beginning at ~12.94 ± 0.15 thousand years ago, oxygen isotopes in the planktonic foraminifera from two sediment cores as well as sediment and seismic data indicate a flood of meltwater, ice and sediment to the Arctic via the Mackenzie River that lasted about 700 years. The minimum in the oxygen isotope ratios lasted ~130 years. We suggest that the floodwater travelled north along the Canadian Archipelago and then through the Fram Strait to the Nordic Seas, where freshening and freezing near sites of deep-water formation would have suppressed convection and caused the YD cooling by reducing the meridional overturning.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Overview of core locations and stratigraphy in the eastern Beaufort Sea.
Fig. 2: Proxy data from JPC-15/27 in the eastern Beaufort Sea.
Fig. 3: Grain size variability down composite JPC-15/27.
Fig. 4: Radiocarbon basis for the age model in this paper.
Fig. 5: Comparison of deglacial δ18O between Orca Basin in the Gulf of Mexico and Beaufort Sea.


  1. 1.

    Dickson, R. R., Meincke, J., Malmberg, S. A. & Lee, A. J. The ‘Great Salinity Anomaly’ in the Northern North Atlantic 1968–1982. Prog. Oceanogr. 20, 103–151 (1988).

    Article  Google Scholar 

  2. 2.

    Aagard, K. & Carmack, E. The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res. 94, 14485–14498 (1989).

    Article  Google Scholar 

  3. 3.

    Häkkinen, S. An Arctic source for the great salinity anomaly: a simulation of the Arctic ice-ocean system for 1955-1975. J. Geophys. Res. 98, 16397–16410 (1993).

    Article  Google Scholar 

  4. 4.

    Kennett, J. P. & Shackleton, N. J. Laurentide ice sheet meltwater recorded in Gulf of Mexico deep-sea cores. Science 188, 147–150 (1975).

    Article  Google Scholar 

  5. 5.

    Williams, C., Flower, B. & Hastings, D. W. Seasonal Laurentide ice sheet melting during the ‘Mystery Interval’ (17.5–14.5 ka). Geology 40, 955–958 (2012).

    Article  Google Scholar 

  6. 6.

    Keigwin, L. D. & Jones, G. A. The marine record of deglaciation from the continental margin off Nova Scotia. Paleoceanography 10, 973–985 (1995).

    Article  Google Scholar 

  7. 7.

    de Vernal, A., Hillaire-Marcel, C. & Bilodeau, G. Reduced meltwater outflow from the Laurentide ice margin during the Younger Dryas. Nature 381, 774–777 (1996).

    Article  Google Scholar 

  8. 8.

    Keigwin, L. D., Sachs, J., Rosenthal, Y. and Boyle, E. A. The 8200 year B.P. event in the slope water system, western subpolar North Atlantic. Paleoceanography 20, PA2003 (2005).

    Google Scholar 

  9. 9.

    Broecker, W. S. et al. The routing of meltwater from the Laurentide ice-sheet during the Younger Dryas cold episode. Nature 341, 318–321 (1989).

    Article  Google Scholar 

  10. 10.

    Muschitiello, F. et al. Fennoscandian freshwater control on Greenland hydroclimate shifts at the onset of the Younger Dryas. Nat. Commun. 6, 8939 (2015).

    Article  Google Scholar 

  11. 11.

    Brauer, A. et al. An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period. Nat. Geosci. 1, 520–523 (2008).

    Article  Google Scholar 

  12. 12.

    Renssen, H. et al. Multiple causes of the Younger Dryas cold period. Nat. Geosci. 8, 946–950 (2015).

    Article  Google Scholar 

  13. 13.

    Andersson, G. Swedish Vegetation History (P.A. Norstedt & Soners, Stockholm, 1897).

  14. 14.

    Hartz, N. & Milthers, V. The late glacial clay in the Allerod brickyard. Medd. Dan. Geol. Foren. 8, 31–60 (1901).

    Google Scholar 

  15. 15.

    Mangerud, J., Andersen, S. T., Berglund, B. E. & Donner, J. J. Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3, 110–127 (1974).

    Google Scholar 

  16. 16.

    Johnson, R. G. & McClure, B. T. A model for northern hemisphere continental ice sheet variation. Quat. Res. 6, 325–353 (1976).

    Article  Google Scholar 

  17. 17.

    Rooth, C. Hydrology and ocean circulation. Prog. Oceanogr. 11, 131–149 (1982).

    Article  Google Scholar 

  18. 18.

    Tarasov, L. & Peltier, W. R. Arctic freshwater forcing of the Younger Dryas cold reversal. Nature 435, 662–665 (2005).

    Article  Google Scholar 

  19. 19.

    Murton, J. B., Bateman, M. D., Dallimore, S. R., Teller, J. T. & Yang, Z. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean. Nature 464, 740–743 (2010).

    Article  Google Scholar 

  20. 20.

    Carlson, A. E., & Clark, P. U. Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. Rev. Geophys. 50, RG4007 (2012).

    Article  Google Scholar 

  21. 21.

    Condron, A. & Winsor, P. Meltwater routing and the Younger Dryas. Proc. Natl Acad. Sci. USA 109, 19928–19933 (2012).

    Article  Google Scholar 

  22. 22.

    McManus, J. F. et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).

    Article  Google Scholar 

  23. 23.

    Rudels, B., Jones, E. P., Anderson, L. G. & Kaattner, G. On the intermediate depth waters of the Arctic Ocean. Geophys. Monogr. 85, 33–46 (1994).

    Google Scholar 

  24. 24.

    Scott, D., Schell, T., St-Onge, G., Rochon, A. & Blasco, S. Foraminiferal assemblage changes over the last 15,000 years on the Mackenzie–Beaufort Sea slope and Amundsen Gulf, Canada: implications for past sea ice conditions. Paleoceanography 24, PA2219 (2009).

    Article  Google Scholar 

  25. 25.

    Bauch, D., Carstens, J. & Wefer, G. Oxygen isotope composition of living Neogloboquadrina pachyderma (sin.) in the Arctic Ocean. Earth Planet. Sci. Lett. 146, 47–58 (1997).

    Article  Google Scholar 

  26. 26.

    Keigwin, L. D. et al. Flooding of Bering Strait and Holocene climate in the Chukchi Sea. Geology 34, 861–864 (2006).

    Article  Google Scholar 

  27. 27.

    Jakobsson, M. et al. Post-glacial flooding of the Beringia Land Bridge dated to 11,000 cal yrs BP based on new geophysical and sediment records. Clim. Past. 13, 991–1005 (2017).

    Article  Google Scholar 

  28. 28.

    Bondevik, S., Mangerud, J., Birks, H. H., Gulliksen, S. & Reimer, P. Changes in North Atlantic radiocarbon reservoir ages during the Allerod and Younger Dryas. Science 312, 1514–1517 (2006).

    Article  Google Scholar 

  29. 29.

    Cao, L., Fairbanks, R. G., Mortlock, R. A. & Risk, M. A. Radiocarbon reservoir age of high latitude North Atlantic surface water during the last deglacial. Quat. Sci. Rev. 26, 732–742 (2007).

    Article  Google Scholar 

  30. 30.

    Ostlund, H., Possnert, G. & Swift, J. Ventilation rate of the deep Arctic Ocean from carbon 14 data. J. Geophys. Res. 92, 3769–3777 (1987).

    Article  Google Scholar 

  31. 31.

    Cronin, T. et al. Deep Arctic Ocean warming during the last glacial cycle. Nat. Geosci. 5, 631–634 (2012).

    Article  Google Scholar 

  32. 32.

    Thornalley, D. J. R. et al. A warm and poorly ventilated deep Arctic Mediterranean during the last glacial period. Science 349, 706–710 (2015).

    Article  Google Scholar 

  33. 33.

    Stokes, C. R., Clark, C. D. & Storrar, R. Major changes in ice stream dynamics during deglaciation of the north-western margin of the Laurentide ice sheet. Quat. Sci. Rev. 28, 721–738 (2009).

    Article  Google Scholar 

  34. 34.

    Rasmussen, S. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res 111, D06102 (2006).

    Article  Google Scholar 

  35. 35.

    Meissner, K. & Clark, P. Impact of floods versus routing events on the thermohaline circulation. Geophys. Res. Lett. 33, L1570 (2006).

    Article  Google Scholar 

  36. 36.

    von Appen, W.-J. & Pickart, R. Two configurations of the western Arctic Shelfbreak Current in summer. J. Phys. Oceanogr. 42, 329–351 (2012).

    Article  Google Scholar 

  37. 37.

    Wheeler, J. et al. Geological Map of Canada. “A” Series Map 1860A (Geological Survey of Canada, 1996);

  38. 38.

    Cooper, L. et al. Linkages among runoff, dissolved organic carbon, and the stable oxygen isotope composition of seawater and other water mass indicators in the Arctic Ocean. J. Geophys. Res. 110, G02013 (2005).

    Article  Google Scholar 

  39. 39.

    Macdonald, R. & Yu, Y. in Estuaries (ed. Wangersky, P. J.) 91–120 (Springer, Berlin, 2006).

  40. 40.

    Proshutinsky, A. & Johnson, M. A. Two circulation regimes of the wind-driven Arctic Ocean. J. Geophys. Res. 102, 12493–12514 (1997).

    Article  Google Scholar 

  41. 41.

    Schell, T., Scott, D. B., Rochon, A. & Blasco, S. Late Quaternary paleoceanography and paleo-sea ice conditions in the Mackenzie Trough and Canyon, Beaufort Sea. Can. J. Earth Sci. 45, 1399–1415 (2008).

    Article  Google Scholar 

  42. 42.

    Fisher, T. G., Waterson, N., Lowell, T. V. & Hajdas, I. Deglaciation ages and meltwater routing in the Fort McMurray region, northeastern Alberta and northwestern Saskatchewan, Canada. Quat. Sci. Rev. 28, 1608–1624 (2009).

    Article  Google Scholar 

  43. 43.

    Leverington, D. W., Mann, J. D. & Teller, J. T. Changes in the bathymetry and volume of glacial Lake Agassiz between 11,000 and 9300 14C yr B.P. Quat. Res. 54, 174–181 (2000).

    Article  Google Scholar 

  44. 44.

    Spielhagen, R. F., Erlenkeuser, H. & Siegert, C. History of freshwater runoff across the Laptev Sea (Arctic) during the last deglaciation. Glob. Planet. Change 48, 187–207 (2005).

    Article  Google Scholar 

  45. 45.

    Hillaire-Marcel, C., Maccali, J., Not, C. & Poirier, A. Geochemical and isotopic tracers of Arctic sea ice sources and export with special attention to the Younger Dryas interval. Quat. Sci. Rev. 79, 184–190 (2013).

    Article  Google Scholar 

  46. 46.

    Mauritzen, C. Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland Ridge. Part 1: evidence for a revised circulation scheme. Deep-Sea Res. 43, 769–806 (1996).

    Article  Google Scholar 

  47. 47.

    Pedlosky, J. & Spall, M. Boundary intensification of vertical velocity in a beta-plane basin. J. Phys. Oceanogr. 35, 2487–2500 (2005).

    Article  Google Scholar 

  48. 48.

    Carlson, A. E. et al. Geochemical proxies of North American freshwater routing during the Younger Dryas cold event. Proc. Natl Acad. Sci. USA 104, 6556–6561 (2007).

    Article  Google Scholar 

  49. 49.

    Cronin, T. M., Rayburn, J. A., Guilbault, J.-P. & Thunell, R. Stable isotope evidence for glacial lake drainage through the St. Lawerence estuary, eastern Canada, ~13.1–12.9 ka. Quat. Int. 260, 55–65 (2012).

    Article  Google Scholar 

  50. 50.

    Levac, E., Lewis, M., Stretch, V., Duchesne, K. & Neulieb, T. Evidence for meltwater drainage via the St. Lawrence River valley in marine cores from the Laurentian Channel at the time of the Younger Dryas. Glob. Planet. Change 130, 47–65 (2015).

    Article  Google Scholar 

  51. 51.

    Boden, P., Fairbanks, R. G., Wright, J. D. & Burckle, L. H. High-resolution stable isotope records from southwest Sweden: the drainage of the Baltic Ice Lake and Younger Dryas ice margin oscillations. Paleoceanography 12, 39–49 (1997).

    Article  Google Scholar 

  52. 52.

    Jennings, A. E., Hald, M., Smith, M. & Andrews, J. T. Freshwater forcing from the Greenland Ice Sheet during the Younger Dryas: evidence from southeastern Greenland shelf cores. Quat. Sci. Rev. 25, 282–298 (2006).

    Article  Google Scholar 

  53. 53.

    Jakobsson, M. et al. The International bathymetric chart of the Arctic Ocean (IBCAO) version 3.0. Geophys. Res. Lett. 39, L12609 (2012).

    Google Scholar 

  54. 54.

    Leventer, A., Williams, D. F. & Kennett, J. P. Dynamics of the Laurentide ice sheet during the last deglaciation: evidence from the Gulf of Mexico. Earth Planet. Sci. Lett. 59, 11–17 (1982).

    Article  Google Scholar 

Download references


We thank the officers and crew of USCGC Healy for making this project a success. We are also indebted to M. Carman for help processing core samples, A. McNichol for helpful discussions of 14C in the Arctic, A. Gagnon for the stable isotope measurements, the NOSAMS staff for providing 14C data and M. McCarthy, C. Moser, C. Griner and C. Mayo for leading the coring effort. S. Nielsen helped with translation of Hartz and Milthers14. The manuscript benefited from help from M. Blaauw and B. Keigwin with the Bayesian age model. This research was funded by NSF grants ARC 1204045 to L.D.K. and ARC 1203944 to N.W.D.

Author information




L.D.K. and N.W.D. conceived the project, N.W.D. and S.K surveyed the seafloor, identified coring locations and studied grain size; B.R. conducted the magnetic measurements; N.Z. and L.G. conducted the XRF scanning; and N.Z. helped develop the chronology. All the authors helped write the manuscript.

Corresponding author

Correspondence to L. D. Keigwin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary information

Supplementary Dataset 1

AMS dates and chronology

Supplementary Dataset 2

Stable isotope data

Supplementary Dataset 3

The δ18O minimum

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keigwin, L.D., Klotsko, S., Zhao, N. et al. Deglacial floods in the Beaufort Sea preceded Younger Dryas cooling. Nature Geosci 11, 599–604 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing