Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global-scale evidence for the refractory nature of riverine black carbon

Subjects

A Publisher Correction to this article was published on 09 October 2018

This article has been updated

Abstract

Wildfires and incomplete combustion of fossil fuel produce large amounts of black carbon. Black carbon production and transport are essential components of the carbon cycle. Constraining estimates of black carbon exported from land to ocean is critical, given ongoing changes in land use and climate, which affect fire occurrence and black carbon dynamics. Here, we present an inventory of the concentration and radiocarbon content (∆14C) of particulate black carbon for 18 rivers around the globe. We find that particulate black carbon accounts for about 15.8 ± 0.9% of river particulate organic carbon, and that fluxes of particulate black carbon co-vary with river-suspended sediment, indicating that particulate black carbon export is primarily controlled by erosion. River particulate black carbon is not exclusively from modern sources but is also aged in intermediate terrestrial carbon pools in several high-latitude rivers, with ages of up to 17,000 14C years. The flux-weighted 14C average age of particulate black carbon exported to oceans is 3,700 ± 400 14C years. We estimate that the annual global flux of particulate black carbon to the ocean is 0.017 to 0.037 Pg, accounting for 4 to 32% of the annually produced black carbon. When buried in marine sediments, particulate black carbon is sequestered to form a long-term sink for CO2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global schematic synthesis of the BC cycle in major reservoirs.
Fig. 2: Range of river PBC fluxes (Gg yr −1) and PBC ∆14C values (‰) of PBC in rivers distributed globally.
Fig. 3: Export of riverine PBC is controlled by erosion.

Similar content being viewed by others

Change history

  • 17 July 2018

    In the HTML version of this Article originally published, Fig. 2 was incorrectly black and white; it has now been replaced with the colour version. The PDF was unaffected.

  • 09 October 2018

    In the version of this Article originally published, the units of the x and y axes in Fig. 3a were incorrectly given as ‘mg km–2 yr–1’; the correct units are ‘Mg km–2 yr–1’. These errors have now been corrected in the online versions.

References

  1. Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).

    Article  Google Scholar 

  2. Zimmerman, A. R. & Mitra, S. Trial by fire: on the terminology and methods used in pyrogenic organic carbon research. Front. Earth Sci. 5, https://doi.org/10.3389/feart.2017.00095 (2017).

  3. Santin, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Change Biol. 22, 76–91 (2016).

    Article  Google Scholar 

  4. Bird, M. I., Wynn, J. G., Saiz, G., Wuster, C. M. & McBeath, A. The pyrogenic carbon cycle. Annu. Rev. Earth Planet. Sci. 43, 273–298 (2015).

    Article  Google Scholar 

  5. Singh, N., Abiven, S., Torn, M. S. & Schmidt, M. W. I. Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences 9, 2847–2857 (2012).

    Article  Google Scholar 

  6. Santin, C., Doerr, S. H., Preston, C. M. & Gonzalez-Rodriguez, G. Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle. Glob. Change Biol. 21, 1621–1633 (2015).

    Article  Google Scholar 

  7. Lehmann, J. et al. Australian climate-carbon cycle feedback reduced by soil black carbon. Nat. Geosci. 1, 832–835 (2008).

    Article  Google Scholar 

  8. Ascough, P. L. et al. Variability in oxidative degradation of charcoal: influence of production conditions and environmental exposure. Geochim. Cosmochim. Acta 75, 2361–2378 (2011).

    Article  Google Scholar 

  9. Pingree, M. R. A. & DeLuca, T. H. Function of wildfire-deposited pyrogenic carbon in terrestrial ecosystems. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2017.00053 (2017).

  10. Ohlson, M., Dahlberg, B., Økland, T., Brown, K. J. & Halvorsen, R. The charcoal carbon pool in boreal forest soils. Nat. Geosci. 2, 692–695 (2009).

    Article  Google Scholar 

  11. Aufdenkampe, A. K. et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 9, 53–60 (2011).

    Article  Google Scholar 

  12. Battin, T. J. et al. The boundless carbon cycle. Nat. Geosci. 2, 598–600 (2009).

    Article  Google Scholar 

  13. Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article  Google Scholar 

  14. Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 171–184 (2007).

    Article  Google Scholar 

  15. Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298–2314 (2009).

    Article  Google Scholar 

  16. Wang, X., Xu, C., Druffel, E. M., Xue, Y. & Qi, Y. Two black carbon pools transported by the Changjiang and Huanghe Rivers in China.Glob. Biogeochem. Cycles 30, 1778–1790 (2016).

    Article  Google Scholar 

  17. Dittmar, T. et al. Continuous flux of dissolved black carbon from a vanished tropical forest biome. Nat. Geosci. 5, 618–622 (2012).

    Article  Google Scholar 

  18. Jaffe, R. et al. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. Science 340, 345–347 (2013).

    Article  Google Scholar 

  19. Coppola, A. I. & Druffel, E. R. M. Cycling of black carbon in the ocean. Geophys. Res. Lett. 43, 4477–4482 (2016).

    Article  Google Scholar 

  20. Ziolkowski, L. A. & Druffel, E. R. M. Aged black carbon identified in marine dissolved organic carbon. Geophys. Res. Lett. 37, L16601 (2010).

    Article  Google Scholar 

  21. Masiello, C. A. New directions in black organic chemistry. Marine Chem. 92, 201–213 (2004).

    Article  Google Scholar 

  22. Santín, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Change Biol. 22, 76–91 (2015).

    Article  Google Scholar 

  23. Guerena, D. T. et al. Terrestrial pyrogenic carbon export to fluvial ecosystems: lessons learned from the White Nile watershed of East Africa. Glob. Biogeochem. Cycles 29, 1911–1928 (2015).

    Article  Google Scholar 

  24. Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607 (2013).

    Article  Google Scholar 

  25. Vorosmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Article  Google Scholar 

  26. Wheatcroft, R. A., Goni, M. A., Hatten, J. A., Pasternack, G. B. & Warrick, J. A. The role of effective discharge in the ocean delivery of particulate organic carbon by small, mountainous river systems.Limnol. Oceanogr. 55, 161–171 (2010).

    Article  Google Scholar 

  27. Galy, V., Peucker-Ehrenbrink, B. & Eglinton, T. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 521, 204–207 (2015).

    Article  Google Scholar 

  28. Wiedemeier, D. B. et al. Characterization, quantification and compound-specific isotopic analysis of pyrogenic carbon using benzene polycarboxylic acids (BPCA). J. Vis. Exp. https://doi.org/10.3791/53922 (2016).

    Article  Google Scholar 

  29. Myers-Pigg, A. N. et al. Labile pyrogenic dissolved organic carbon in major Siberian Arctic rivers: Implications for wildfire-stream metabolic linkages. Geophys. Res. Lett. 42, 377–385 (2015).

    Article  Google Scholar 

  30. Lang, S. Q., Früh-Green, G. L., Bernasconi, S. M. & Wacker, L. Isotopic (δ13C, Δ14C) analysis of organic acids in marine samples using wet chemical oxidation. Limnol. Oceanogr. Methods 11, 161–175 (2013).

    Article  Google Scholar 

  31. Reisser, M., Purves, R. S., Schmidt, M. W. I. & Abiven, S. Pyrogenic carbon in soils: A literature-based inventory and a global estimation of its content in soil organic carbon and stocks. Front. Earth Sci. https://doi.org/10.3389/feart.2016.00080 (2016).

  32. Galy, V. & Eglinton, T. Protracted storage of biospheric carbon in the Ganges–Brahmaputra basin. Nat. Geosci. 4, 843–847 (2011).

    Article  Google Scholar 

  33. Burdige, D. J. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets?. Chem. Rev. 107, 467–485 (2007).

    Article  Google Scholar 

  34. Hanke, U. M. et al. What on Earth have we been burning? Deciphering sedimentary records of pyrogenic carbon. Environ. Sci. Technol. 51, 12972–12980 (2017).

    Article  Google Scholar 

  35. Marwick, T. R. et al. The age of river-transported carbon: a global perspective. Glob. Biogeochem. Cycles 29, 122–137 (2015).

    Article  Google Scholar 

  36. Cotrufo, M. F. et al. Redistribution of pyrogenic carbon from hillslopes to stream corridors following a large montane wildfire.Glob. Biogeochem. Cycles 30, 1348–1355 (2016).

    Article  Google Scholar 

  37. Frueh, W. T. & Lancaster, S. T. Correction of deposit ages for inherited ages of charcoal: implications for sediment dynamics inferred from random sampling of deposits on headwater valley floors. Quat. Sci. Rev. 88, 110–124 (2014).

    Article  Google Scholar 

  38. Tao, S., Eglinton, T. I., Montluçon, D. B., McIntyre, C. & Zhao, M. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: regional significance and global relevance. Earth. Planet. Sci. Lett. 414, 77–86 (2015).

    Article  Google Scholar 

  39. Feng, X. et al. Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins. Proc. Natl Acad. Sci. USA 110, 14168–14173 (2013).

    Article  Google Scholar 

  40. Schefuß, E. et al. Hydrologic control of carbon cycling and aged carbon discharge in the Congo River basin. Nat. Geosci. 9, 687–690 (2016).

    Article  Google Scholar 

  41. Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607 (2013).

    Article  Google Scholar 

  42. Marin-Spiotta, E. et al. Long-term stabilization of deep soil carbon by fire and burial during early Holocene climate change. Nat. Geosci. 7, 428–432 (2014).

    Article  Google Scholar 

  43. Wagner, S., Cawley, K. M., Rosario-Ortiz, F. L. & Jaffe, R. In-stream sources and links between particulate and dissolved black carbon following a wildfire. Biogeochemistry 124, 145–161 (2015).

    Article  Google Scholar 

  44. Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    Article  Google Scholar 

  45. Lehmann, J. et al. in Biochar for Environmental Management (eds Lehmann, J. & Joseph, S.) 235–281 (2015).

  46. Reeburgh, W. S. Figures summarizing the global cycles of biogeochemically important elements. Bull. Ecol. Soc. Am. 78, 260–267 (1997).

    Google Scholar 

  47. Hedges, J. I. & Keil, R. G. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49, 81–115 (1995).

    Article  Google Scholar 

  48. Masiello, C. A. & Druffel, E. R. M. Black carbon in deep-sea sediments. Science 280, 1911–1913 (1998).

    Article  Google Scholar 

  49. Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2013).

  50. Flannigan, M. et al. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 294, 54–61 (2013).

    Article  Google Scholar 

  51. Masiello, C. A. & Druffel, E. R. M. Carbon isotope geochemistry of the Santa Clara River. Glob. Biogeochem. Cycles 15, 407–416 (2001).

    Article  Google Scholar 

  52. Komada, T., Druffel, E. R. M. & Trumbore, S. E. Oceanic export of relict carbon by small mountainous rivers.Geophys. Res. Lett. 31, L07504 (2004).

    Article  Google Scholar 

  53. Glaser, B., Haumaier, L., Guggenberger, G. & Zech, W. Black carbon in soils: the use of benzenecarboxylic acids as specific markers. Org. Geochem. 29, 811–819 (1998).

    Article  Google Scholar 

  54. Hanke, U. M. et al. Comprehensive radiocarbon analysis of benzene polycarboxylic acids (BPCAs) derived from pyrogenic carbon in environmental samples.Radiocarbon 59, 1103–1116 (2017).

    Article  Google Scholar 

  55. Ziolkowski, L. A. & Druffel, E. R. M. The feasibility of isolation and detection of fullerenes and carbon nanotubes using the benzene polycarboxylic acid method.Marine Pollut. Bull. 59, 213–218 (2009).

    Article  Google Scholar 

  56. Ziolkowski, L. A., Chamberlin, A. R., Greaves, J. & Druffel, E. R. M. Quantification of black carbon in marine systems using the benzene polycarboxylic acid method: a mechanistic and yield study. Limnol. Oceanogr. Methods 9, 140–149 (2011).

    Article  Google Scholar 

  57. Hammes, K. et al. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere.Glob. Biogeochem. Cycles 21, GB3016 (2007).

    Article  Google Scholar 

  58. Coppola, A. I., Ziolkowski, L. A. & Druffel, E. R. M. Extraneous carbon assessments in radiocarbon measurements of black carbon in enviromental matrices. Radiocarbon 55, 1631–1640 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Hilf for his technical support and laboratory assistance. We also are grateful for the support of D. Montlucon for collecting Mississippi River samples and locating archives, N. Drenzek for collection of the Eel River samples, A. Lima, J. King and C. Reddy for collection of Pettaquamscutt River samples, and members of the Woods Hole Research Center for collection of Colville and Yukon River samples. We thank D. Vance, B. Revels, and F. Siringan for providing the logistical foundation for collecting Amazon River and Cagayan samples, D. Brandova for her technical assistance, and the ETH Ion Beam Physics Lab AMS Lab colleagues for AMS support. We thank N. Baltensweiler (University of Zurich, Information Technology MELS/SIVIC) and G. J. Fiske (Woods Hole Research Center) for help with Figs 1 and 3, respectively. We thank I. Medhaug for comments on the manuscript. A.C. acknowledges financial support from the University of Zurich Forschungskredit Fellowship and the University of Zurich (grant No. STWF-18-026). M.R., S.A. and M.S. acknowledge support from the University Research Priority Projection Global Change and Biodiversity (URPP-GCB). M.Z. acknowledges support from the National Natural Science Foundation of China (No. 41521064). T.E. acknowledges support from the Swiss National Science Foundation (“CAPS-LOCK” and “CAPS-LOCK2” #200021_140850). V.G. acknowledges financial support from an Independent Study Award from the Woods Hole Oceanographic Institution.

Author information

Authors and Affiliations

Authors

Contributions

D.W., T.E., M.S. and A.C. contributed to the design of the study. T.E., G.N, M.U., T.B., C.F., E.S., M.Z., B.V., V.G., M.R. and B.P.E. provided river samples. A.C. and D.W. conducted the black carbon laboratory analyses. N.H., A.C., U.H. and L.W. provided analytical assistance and quality control to the radiocarbon measurements. V.G., A.C., S.A, M.S., E.S. and T.E. contributed to data analysis and interpretation. A.C. authored the manuscript and constructed the figures. All authors contributed comments and input on this manuscript.

Corresponding author

Correspondence to Alysha I. Coppola.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Description, Figures and Tables.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coppola, A.I., Wiedemeier, D.B., Galy, V. et al. Global-scale evidence for the refractory nature of riverine black carbon. Nature Geosci 11, 584–588 (2018). https://doi.org/10.1038/s41561-018-0159-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0159-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing