Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond

An Author Correction to this article was published on 18 July 2018

This article has been updated


Over the past 3.5 million years, there have been several intervals when climate conditions were warmer than during the pre-industrial Holocene. Although past intervals of warming were forced differently than future anthropogenic change, such periods can provide insights into potential future climate impacts and ecosystem feedbacks, especially over centennial-to-millennial timescales that are often not covered by climate model simulations. Our observation-based synthesis of the understanding of past intervals with temperatures within the range of projected future warming suggests that there is a low risk of runaway greenhouse gas feedbacks for global warming of no more than 2 °C. However, substantial regional environmental impacts can occur. A global average warming of 1–2 °C with strong polar amplification has, in the past, been accompanied by significant shifts in climate zones and the spatial distribution of land and ocean ecosystems. Sustained warming at this level has also led to substantial reductions of the Greenland and Antarctic ice sheets, with sea-level increases of at least several metres on millennial timescales. Comparison of palaeo observations with climate model results suggests that, due to the lack of certain feedback processes, model-based climate projections may underestimate long-term warming in response to future radiative forcing by as much as a factor of two, and thus may also underestimate centennial-to-millennial-scale sea-level rise.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Changes in global climate and radiative forcing over the last 4 Myr.
Fig. 2: Model–data comparison of climate changes in the future and during the LIG.
Fig. 3: Impacts and responses of components of the Earth system.

Change history

  • 18 July 2018

    In the version of this Review Article originally published, ref. 10 was mistakenly cited instead of ref. 107 at the end of the sentence: “This complexity of residual ice cover makes it likely that HTM warming was regional, rather than global, and its peak warmth thus had different timing in different locations.” In addition, for ref. 108, Scientific Reports was incorrectly given as the publication name; it should have been Scientific Data. These errors have now been corrected in the online versions.


  1. 1.

    Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res. 117, D08101 (2012).

    Article  Google Scholar 

  2. 2.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, Cambridge, 2013).

  3. 3.

    Clark, P. U. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 6, 360–369 (2016).

    Article  Google Scholar 

  4. 4.

    Eby, M. et al. Lifetime of anthropogenic climate change: millennial time scales of potential CO2 and surface temperature perturbations. J. Clim. 22, 2501–2511 (2009).

    Article  Google Scholar 

  5. 5.

    Subsidiary Body for Scientific and Technological Advice. Report on the Structured Expert Dialogue on the 2013–2015 Review (UNFCC, 2015).

  6. 6.

    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472 (2009).

    Article  Google Scholar 

  7. 7.

    Valdes, P. Built for stability. Nat. Geosci. 4, 414–416 (2011).

    Article  Google Scholar 

  8. 8.

    Tzedakis, P. C. et al. Interglacial diversity. Nat. Geosci. 2, 751–755 (2009).

    Article  Google Scholar 

  9. 9.

    Martinez-Boti, M. A. et al. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518, 49–54 (2015).

    Article  Google Scholar 

  10. 10.

    Lunt, D. J. et al. A model–data comparison for a multi-model ensemble of early Eocene atmosphere–ocean simulations: EoMIP. Clim. Past 8, 1717–1736 (2012).

    Article  Google Scholar 

  11. 11.

    Paleosens Project Members. Making sense of palaeoclimate sensitivity. Nature 491, 683–691 (2012).

    Article  Google Scholar 

  12. 12.

    Bentley, M. J. et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quat. Sci. Rev. 100, 1–9 (2014).

    Article  Google Scholar 

  13. 13.

    Solomina, O. N. et al. Holocene glacier fluctuations. Quat. Sci. Rev. 111, 9–34 (2015).

    Article  Google Scholar 

  14. 14.

    Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).

    Article  Google Scholar 

  15. 15.

    Briner, J. P. et al. Holocene climate change in Arctic Canada and Greenland. Quat. Sci. Rev. 147, 340–364 (2016).

    Article  Google Scholar 

  16. 16.

    Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019 (2015).

    Article  Google Scholar 

  17. 17.

    Colville, E. J. et al. Sr-Nd-Pb isotope evidence for ice-sheet presence on Southern Greenland during the last interglacial. Science 333, 620–623 (2011).

    Article  Google Scholar 

  18. 18.

    DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    Article  Google Scholar 

  19. 19.

    Sutter, J., Gierz, P., Grosfeld, K., Thoma, M. & Lohmann, G. Ocean temperature thresholds for Last Interglacial West Antarctic Ice Sheet collapse. Geophys. Res. Lett. 43, 2675–2682 (2016).

    Article  Google Scholar 

  20. 20.

    Reyes, A. V. et al. South Greenland ice-sheet collapse during Marine Isotope Stage 11. Nature 510, 525–528 (2014).

    Article  Google Scholar 

  21. 21.

    Schaefer, J. M. et al. Greenland was nearly ice-free for extended periods during the Pleistocene. Nature 540, 252–255 (2016).

    Article  Google Scholar 

  22. 22.

    de Boer, B. et al. Simulating the Antarctic ice sheet in the late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project. Cryosphere 9, 881–903 (2015).

    Article  Google Scholar 

  23. 23.

    Dowsett, H. et al. The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction. Clim. Past 12, 1519–1538 (2016).

    Article  Google Scholar 

  24. 24.

    Naish, T. et al. Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458, 322–328 (2009).

    Article  Google Scholar 

  25. 25.

    Cook, C. P. et al. Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth. Nat. Geosci. 6, 765–769 (2013).

    Article  Google Scholar 

  26. 26.

    de Vernal, A., Gersonde, R., Goosse, H., Seidenkrantz, M.-S. & Wolff, E. W. Sea ice in the paleoclimate system: the challenge of reconstructing sea ice from proxies – an introduction. Quat. Sci. Rev. 79, 1–8 (2013).

    Article  Google Scholar 

  27. 27.

    Knies, J., Cabedo-Sanz, P., Belt, S. T., Baranwal, S., Fietz, S. & Rosell-Mele, A. The emergence of modern sea ice cover in the Arctic Ocean. Nat. Commun. 5, 5608 (2014).

    Article  Google Scholar 

  28. 28.

    Stein, R., Fahl, K., Gierz, P., Niessen, F. & Lohmann, G. Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial. Nat. Commun. 8, 373 (2017).

    Article  Google Scholar 

  29. 29.

    Spolaor, A. et al. Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core. Sci. Rep. 6, 33925 (2016).

    Article  Google Scholar 

  30. 30.

    Holloway, M. D. et al. The spatial structure of the 128 ka Antarctic sea ice minimum. Geophys. Res. Lett. 44, 11129–11139 (2017).

    Article  Google Scholar 

  31. 31.

    Clotten, C., Stein, R., Fahl, K. & De Schepper, S. Seasonal sea ice cover during the warm Pliocene: evidence from the Iceland Sea (ODP Site 907). Earth Planet. Sci. Lett. 481, 61–72 (2018).

    Article  Google Scholar 

  32. 32.

    Hessler, I. et al. Implication of methodological uncertainties for mid-Holocene sea surface temperature reconstructions. Clim. Past 10, 2237–2252 (2014).

    Article  Google Scholar 

  33. 33.

    Praetorius, S. K. et al. North Pacific deglacial hypoxic events linked to abrupt ocean warming. Nature 527, 362–366 (2015).

    Article  Google Scholar 

  34. 34.

    Duncan, B. et al. Interglacial/glacial changes in coccolith-rich deposition in the SW Pacific Ocean: an analogue for a warmer world? Glob. Planet. Chang. 144, 252–262 (2016).

    Article  Google Scholar 

  35. 35.

    Studer, A. S. et al. Antarctic zone nutrient conditions during the last two glacial cycles. Paleoceanography 30, 845–862 (2015).

    Article  Google Scholar 

  36. 36.

    Jaccard, S. L. et al. Two modes of change in Southern Ocean productivity over the past million years. Science 339, 1419–1423 (2013).

    Article  Google Scholar 

  37. 37.

    Sigman, D. M., Jaccard, S. L. & Haug, G. H. Polar ocean stratification in a cold climate. Nature 428, 59–63 (2004).

    Article  Google Scholar 

  38. 38.

    Cane, T., Rohling, E. J., Kemp, A. E. S., Cooke, S. & Pearce, R. B. High-resolution stratigraphic framework for Mediterranean sapropel S5: defining temporal relationships between records of Eemian climate variability. Palaeogeogr. Palaeoclimatol. Palaeoecol. 183, 87–101 (2002).

    Article  Google Scholar 

  39. 39.

    Kender, S. et al. Mid Pleistocene foraminiferal mass extinction coupled with phytoplankton evolution. Nat. Commun. 7, 11970 (2016).

    Article  Google Scholar 

  40. 40.

    Haywood, A. M., Dowsett, H. J. & Dolan, A. M. Integrating geological archives and climate models for the mid-Pliocene warm period. Nat. Commun. 7, 10646 (2016).

    Article  Google Scholar 

  41. 41.

    Yasuhara, M., Hunt, G., Breitburg, D., Tsujimoto, A. & Katsuki, K. Human-induced marine ecological degradation: micropaleontological perspectives. Ecol. Evol. 2, 3242–3268 (2012).

    Article  Google Scholar 

  42. 42.

    Jolly, D., Harrison, S. P., Damnati, B. & Bonnefille, R. Simulated climate and biomes of Africa during the Late Quarternary: comparison with pollen and lake status data. Quat. Sci. Rev. 17, 629–657 (1998).

    Article  Google Scholar 

  43. 43.

    Williams, J. W., Shuman, B. & Bartlein, P. J. Rapid responses of the prairie-forest ecotone to early Holocene aridity in mid-continental North America. Glob. Planet. Chang. 66, 195–207 (2009).

    Article  Google Scholar 

  44. 44.

    Reasoner, M. & Tinner, W. in Encyclopedia of Paleoclimatology and Ancient Environments (ed. Gornitz, V.) 442–446 (Springer, Dordrecht, 2008).

  45. 45.

    Bigelow, N. H. Climate change and Arctic ecosystems: 1. vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present. J. Geophys. Res. 108, 8170 (2003).

    Article  Google Scholar 

  46. 46.

    CAPE-Last Interglacial Project Members. Last Interglacial Arctic warmth confirms polar amplification of climate change. Quat. Sci. Rev. 25, 1383–1400 (2006).

    Article  Google Scholar 

  47. 47.

    Larrasoaña, J. C., Roberts, A. P. & Rohling, E. J. Dynamics of Green Sahara periods and their role in hominin evolution. PLoS ONE 8, e76514 (2013).

    Article  Google Scholar 

  48. 48.

    de Vernal, A. & Hillaire-Marcel, C. Natural variability of Greenland climate, vegetation, and ice volume during the past million years. Science 320, 1622–1625 (2008).

    Article  Google Scholar 

  49. 49.

    Helmens, K. F. et al. Major cooling intersecting peak Eemian Interglacial warmth in northern Europe. Quat. Sci. Rev. 122, 293–299 (2015).

    Article  Google Scholar 

  50. 50.

    Melles, M. et al. 2.8 million years of Arctic climate change from Lake El’gygytgyn, NE Russia. Science 337, 315–320 (2012).

    Article  Google Scholar 

  51. 51.

    Urrego, D. H., Sánchez Goñi, M. F., Daniau, A. L., Lechevrel, S. & Hanquiez, V. Increased aridity in southwestern Africa during the warmest periods of the last interglacial. Clim. Past 11, 1417–1431 (2015).

    Article  Google Scholar 

  52. 52.

    Andreev, A. A. et al. Late Pliocene and Early Pleistocene vegetation history of northeastern Russian Arctic inferred from the Lake El’gygytgyn pollen record. Clim. Past 10, 1017–1039 (2014).

    Article  Google Scholar 

  53. 53.

    Lemoine, D. & Traeger, C. P. Economics of tipping the climate dominoes. Nat. Clim. Change 6, 514–519 (2016).

    Article  Google Scholar 

  54. 54.

    Schilt, A. et al. Isotopic constraints on marine and terrestrial N2O emissions during the last deglaciation. Nature 516, 234–237 (2014).

    Article  Google Scholar 

  55. 55.

    Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616–619 (2014).

    Article  Google Scholar 

  56. 56.

    Rhodes, R. H. et al. Enhanced tropical methane production in response to iceberg discharge in the North Atlantic. Science 348, 1016 (2015).

    Article  Google Scholar 

  57. 57.

    Frank, D. C. et al. Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463, 527–530 (2010).

    Article  Google Scholar 

  58. 58.

    Bauska, T. K. et al. Links between atmospheric carbon dioxide, the land carbon reservoir and climate over the past millennium. Nat. Geosci. 8, 383–387 (2015).

    Article  Google Scholar 

  59. 59.

    Charman, D. J. et al. Climate-related changes in peatland carbon accumulation during the last millennium. Biogeosciences 10, 929–944 (2013).

    Article  Google Scholar 

  60. 60.

    Frolking, S. & Roulet, N. T. Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Glob. Change Biol. 13, 1079–1088 (2007).

    Article  Google Scholar 

  61. 61.

    Stocker, B. D., Yu, Z., Massa, C. & Joos, F. Holocene peatland and ice-core data constraints on the timing and magnitude of CO2 emissions from past land use. Proc. Natl Acad. Sci. USA 114, 1492–1497 (2017).

    Article  Google Scholar 

  62. 62.

    Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, (2010).

  63. 63.

    Dalton, A. S., Finkelstein, S. A., Barnett, P. J. & Forman, S. L. Constraining the Late Pleistocene history of the Laurentide Ice Sheet by dating the Missinaibi Formation, Hudson Bay Lowlands, Canada. Quat. Sci. Rev. 146, 288–299 (2016).

    Article  Google Scholar 

  64. 64.

    Sierralta, M., Urban, B., Linke, G. & Frechen, M. Middle Pleistocene interglacial peat deposits from Northern Germany investigated by 230Th/U and palynology: case studies from Wedel and Schöningen. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 168, 373–387 (2017).

    Article  Google Scholar 

  65. 65.

    Mitchell, W. T. et al. Stratigraphic and paleoenvironmental reconstruction of a mid-Pliocene fossil site in the High Arctic (Ellesmere Island, Nunavut): evidence of an ancient peatland with beaver activity. Arctic 69, 185–204 (2016).

    Article  Google Scholar 

  66. 66.

    Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015).

    Article  Google Scholar 

  67. 67.

    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

    Article  Google Scholar 

  68. 68.

    Bock, M. et al. Glacial/interglacial wetland, biomass burning and geologic methane emissions constrained by dual stable isotopic CH4 ice core records. Proc. Natl Acad. Sci. USA 114, 5778–5786 (2017).

    Article  Google Scholar 

  69. 69.

    Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. (2015).

  70. 70.

    Loulergue, L. et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453, 383–386 (2008).

    Article  Google Scholar 

  71. 71.

    Köhler, P., Knorr, G. & Bard, E. Permafrost thawing as a possible source of abrupt carbon release at the onset of the Bølling/Allerød. Nat. Commun. 5, 5520 (2014).

    Article  Google Scholar 

  72. 72.

    Kennett, J. P., Cannariato, K. G., Hendy, I. L. & Behl, R. J. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science 288, 128–133 (2000).

    Article  Google Scholar 

  73. 73.

    Bock, M. et al. Hydrogen isotopes preclude clathrate CH4 emissions at the onset of Dansgaard-Oeschger events. Science 328, 1686–1689 (2010).

    Article  Google Scholar 

  74. 74.

    Petrenko, V. V. et al. Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event. Nature 548, 443–446 (2017).

    Article  Google Scholar 

  75. 75.

    MacDougall, A. H. & Knutti, R. Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach. Biogeosciences 13, 2123–2136 (2016).

    Article  Google Scholar 

  76. 76.

    Gregory, J. M. & Huybrechts, P. Ice-sheet contributions to future sea-level change. Philos. Trans. R. Soc. Lond. A 354, 1709–1731 (2006).

    Article  Google Scholar 

  77. 77.

    Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the Greenland ice sheet. Nat. Clim. Change 2, 429–432 (2012).

    Article  Google Scholar 

  78. 78.

    Hatfield, R. G. et al. Interglacial responses of the southern Greenland ice sheet over the last 430,000 years determined using particle-size specific magnetic and isotopic tracers. Earth Planet. Sci. Lett. 454, 225–236 (2016).

    Article  Google Scholar 

  79. 79.

    Yau, A. M., Bender, M. L., Blunier, T. & Jouzel, J. Setting a chronology for the basal ice at Dye-3 and GRIP: implications for the long-term stability of the Greenland Ice Sheet. Earth Planet. Sci. Lett. 451, 1–9 (2016).

    Article  Google Scholar 

  80. 80.

    Bierman, P. R., Shakun, J. D., Corbett, L. B., Zimmerman, S. R. & Rood, D. H. A persistent and dynamic East Greenland Ice Sheet over the past 7.5 million years. Nature 540, 256–260 (2016).

    Article  Google Scholar 

  81. 81.

    Scherer, R. P., Aldahan, A., Tulaczyk, S., Possnert, G., Engelhardt, H. & Kamb, B. Pleistocene collapse of the West Antarctic ice sheet. Science 281, 82–85 (1998).

    Article  Google Scholar 

  82. 82.

    Barnes, D. K. A. & Hillenbrand, C.-D. Faunal evidence for a late quaternary trans-Antarctic seaway. Glob. Change Biol. 16, 3297–3303 (2010).

    Article  Google Scholar 

  83. 83.

    Williams, T. et al. Evidence for iceberg armadas from East Antarctica in the Southern Ocean during the late Miocene and early Pliocene. Earth Planet. Sci. Lett. 290, 351–361 (2010).

    Article  Google Scholar 

  84. 84.

    Golledge, N. R., Levy, R. H., McKay, R. M. & Naish, T. R. East Antarctic ice sheet most vulnerable to Weddell Sea warming. Geophys. Res. Lett. 44, 2343–2351 (2017).

    Google Scholar 

  85. 85.

    Steig, E. J. et al. Influence of West Antarctic ice sheet collapse on Antarctic surface climate. Geophys. Res. Lett. 42, 4862–4868 (2015).

    Article  Google Scholar 

  86. 86.

    Vaughan, D. G., Barnes, D. K. A., Fretwell, P. T. & Bingham, R. G. Potential seaways across West Antarctica. Geochem. Geophys. 12, Q10004 (2011).

    Google Scholar 

  87. 87.

    Hay, C. C., Morrow, E., Kopp, R. E. & Mitrovica, J. X. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 517, 481–484 (2015).

    Article  Google Scholar 

  88. 88.

    Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C. & Oppenheimer, M. A probabilistic assessment of sea level variations within the last interglacial stage. Geophys. J. Int. 193, 711–716 (2013).

    Article  Google Scholar 

  89. 89.

    O’Leary, M. J. et al. Ice sheet collapse following a prolonged period of stable sea level during the last interglacial. Nat. Geosci. 6, 796–800 (2013).

    Article  Google Scholar 

  90. 90.

    Rohling, E. J. et al. High rates of sea-level rise during the last interglacial period. Nat. Geosci. 1, 38–42 (2007).

    Article  Google Scholar 

  91. 91.

    Nerem, R. S. et al. Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proc. Natl Acad. Sci. USA 115, 2022–2025 (2018).

    Article  Google Scholar 

  92. 92.

    Tinner, W. et al. A 700-year paleoecological record of boreal ecosystem responses to climatic variation from Alaska. Ecology 89, 729–743 (2008).

    Article  Google Scholar 

  93. 93.

    Schwörer, C., Henne, P. D. & Tinner, W. A model-data comparison of Holocene timberline changes in the Swiss Alps reveals past and future drivers of mountain forest dynamics. Glob. Change Biol. 20, 1512–1526 (2014).

    Article  Google Scholar 

  94. 94.

    Verbesselt, J. et al. Remotely sensed resilience of tropical forests. Nat. Clim. Change 6, 1028–1031 (2016).

    Article  Google Scholar 

  95. 95.

    MacDonald, G. M., Kremenetski, K. V. & Beilman, D. W. Climate change and the northern Russian treeline zone. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 2285–2299 (2008).

    Article  Google Scholar 

  96. 96.

    Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E. H. & Chapin, F. S. Thresholds for boreal biome transitions. Proc. Natl Acad. Sci. USA 109, 21384–21389 (2012).

    Article  Google Scholar 

  97. 97.

    Ruosch, M., Spahni, R., Joos, F., Henne, P. D., van der Knaap, W. O. & Tinner, W. Past and future evolution of Abies alba forests in Europe - comparison of a dynamic vegetation model with palaeo data and observations. Glob. Change Biol. 22, 727–740 (2016).

    Article  Google Scholar 

  98. 98.

    Colombaroli, D. et al. Response of broadleaved evergreen Mediterranean forest vegetation to fire disturbance during the Holocene: insights from the peri-Adriatic region. J. Biogeogr. 36, 314–326 (2009).

    Article  Google Scholar 

  99. 99.

    Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).

    Article  Google Scholar 

  100. 100.

    Kröpelin, S. et al. Climate-driven ecosystem succession in the Sahara: the past 6000 years. Science 320, 765–768 (2008).

    Article  Google Scholar 

  101. 101.

    The Paris Agreement (UN Treaty Collection, 2015).

  102. 102.

    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).

    Google Scholar 

  103. 103.

    Snyder, C. W. Evolution of global temperature over the past two million years. Nature 538, 226–228 (2016).

    Article  Google Scholar 

  104. 104.

    Hansen, J., Sato, M., Russell, G. & Kharecha, P. Climate sensitivity, sea level and atmospheric carbon dioxide. Philos. Trans. A Math. Phys. Eng. Sci. 371, 20120294 (2013).

    Article  Google Scholar 

  105. 105.

    Bartoli, G., Hönisch, B. & Zeebe, R. E. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations. Paleoceanography 26, PA4213 (2011).

    Article  Google Scholar 

  106. 106.

    Hönisch, B., Hemming, N. G., Archer, D., Siddall, M. & McManus, J. Atmospheric carbon dioxide concentration across the Mid-Pleistocene transition. Science 324, 1551–1554 (2009).

    Article  Google Scholar 

  107. 107.

    Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).

    Article  Google Scholar 

  108. 108.

    PAGES2k Consortium. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data 4, 170088 (2017).

    Article  Google Scholar 

  109. 109.

    Hoffman, J. S., Clark, P. U., Parnell, A. C. & He, F. Regional and global sea-surface temperatures during the last interglaciation. Science 355, 276–279 (2017).

    Article  Google Scholar 

  110. 110.

    Otto-Bliesner, B. L. et al. How warm was the last interglacial? New model–data comparisons. Philos. Trans. A Math Phys. Eng. Sci. 371, 20130097 (2013).

    Article  Google Scholar 

  111. 111.

    Barber, D. C. et al. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, 344–348 (1999).

    Article  Google Scholar 

  112. 112.

    Schilt, A. et al. Atmospheric nitrous oxide during the last 140,000 years. Earth Planet. Sci. Lett. 300, 33–43 (2010).

    Article  Google Scholar 

  113. 113.

    Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).

    Article  Google Scholar 

  114. 114.

    Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L. & Brewer, S. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature 554, 92–96 (2018).

    Article  Google Scholar 

  115. 115.

    Kobashi, T. et al. Volcanic influence on centennial to millennial Holocene Greenland temperature change. Sci. Rep. 7, 1441 (2017).

    Article  Google Scholar 

  116. 116.

    Vinther, B. et al. Holocene thinning of the Greenland ice sheet. Nature 461, 385–388 (2009).

    Article  Google Scholar 

  117. 117.

    Buizert, C. et al. Greenland-wide seasonal temperatures during the last deglaciation. Geophys. Res. Lett. 45, 1905–1914 (2018).

    Article  Google Scholar 

  118. 118.

    Eldevik, T. et al. A brief history of climate – the northern seas from the Last Glacial Maximum to global warming. Quat. Sci. Rev. 106, 225–246 (2014).

    Article  Google Scholar 

  119. 119.

    Max, L. et al. Sea surface temperature variability and sea-ice extent in the subarctic northwest Pacific during the past 15,000 years. Paleoceanography 27, PA3213 (2012).

    Article  Google Scholar 

  120. 120.

    Barron, J. A., Heusser, L., Herbert, T. & Lyle, M. High-resolution climatic evolution of coastal northern California during the past 16,000 years. Paleoceanography 18, 1020 (2003).

    Article  Google Scholar 

  121. 121.

    Clark, P. U. & Huybers, P. Interglacial and future sea level. Nature 462, 856–857 (2009).

    Article  Google Scholar 

  122. 122.

    McKay, N. P., Overpeck, J. T. & Otto-Bliesner, B. L. The role of ocean thermal expansion in Last Interglacial sea level rise. Geophys. Res. Lett. 38, L14605 (2011).

    Article  Google Scholar 

  123. 123.

    CLIMAP Project Members. The last interglacial ocean. Quat. Res. 21, 123–224 (1984).

    Google Scholar 

  124. 124.

    Turney, C. S. M. & Jones, R. T. Does the Agulhas Current amplify global temperatures during super-interglacials? J. Quat. Sci. 25, 839–843 (2010).

    Article  Google Scholar 

  125. 125.

    Capron, E., Govin, A., Feng, R., Otto-Bliesner, B. L. & Wolff, E. W. Critical evaluation of climate syntheses to benchmark CMIP6/PMIP4 127 ka last interglacial simulations in the high-latitude regions. Quat. Sci. Rev. 168, 137–150 (2017).

    Article  Google Scholar 

  126. 126.

    Landais, A. et al. How warm was Greenland during the last interglacial period? Clim. Past 12, 1933–1948 (2016).

    Article  Google Scholar 

  127. 127.

    Dowsett, H. J. et al. Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models. Nat. Clim. Change 2, 365–371 (2012).

    Article  Google Scholar 

  128. 128.

    Brigham-Grette, J. et al. Pliocene warmth, polar amplification, and stepped pleistocene cooling recorded in NE Arctic Russia. Science 340, 1421–1427 (2013).

    Article  Google Scholar 

  129. 129.

    Ballantyne, A. P., Greenwood, D. R., Sinninghe Damsté, J. S., Csank, A. Z., Eberle, J. J. & Rybczynski, N. Significantly warmer Arctic surface temperatures during the Pliocene indicated by multiple independent proxies. Geology 38, 603–606 (2010).

    Article  Google Scholar 

  130. 130.

    Salzmann, U. et al. Challenges in quantifying Pliocene terrestrial warming revealed by data–model discord. Nat. Clim. Change 3, 969–974 (2013).

    Article  Google Scholar 

  131. 131.

    Lea, D. W. The 100 000-yr cycle in tropical SST, greenhouse forcing, and climate sensitivity. J. Clim. 17, 2170–2179 (2004).

    Article  Google Scholar 

  132. 132.

    Dyez, K. A. & Ravelo, A. C. Late Pleistocene tropical Pacific temperature sensitivity to radiative greenhouse gas forcing. Geology 41, 23–26 (2013).

    Article  Google Scholar 

  133. 133.

    Lunt, D. J., Haywood, A. M., Schmidt, G. A., Salzmann, U., Valdes, P. J. & Dowsett, H. J. Earth system sensitivity inferred from Pliocene modelling and data. Nat. Geosci. 3, 60–64 (2010).

    Article  Google Scholar 

  134. 134.

    von der Heydt, A. S. et al. Lessons on climate sensitivity from past climate changes. Curr. Clim. Change Rep. 2, 148–158 (2016).

    Article  Google Scholar 

  135. 135.

    Meissner, K. J. et al. The Paleocene-Eocene Thermal Maximum: how much carbon is enough? Paleoceanography 29, 946–963 (2014).

    Article  Google Scholar 

  136. 136.

    Anagnostou, E. et al. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 533, 380–384 (2016).

    Article  Google Scholar 

  137. 137.

    Goldner, A., Huber, M. & Caballero, R. Does Antarctic glaciation cool the world? Clim. Past 9, 173–189 (2013).

    Article  Google Scholar 

  138. 138.

    Kiehl, J. T. & Shields, C. A. Sensitivity of the Palaeocene–Eocene Thermal Maximum climate to cloud properties. Phil. Trans. R. Soc. A 371, 20130093 (2013).

    Article  Google Scholar 

  139. 139.

    Sagoo, N., Valdes, P., Flecker, R. & Gregoire, L. J. The Early Eocene equable climate problem: can perturbations of climate model parameters identify possible solutions? Phil. Trans. R. Soc. A 371, 20130123 (2013).

    Article  Google Scholar 

Download references


Financial support of the PAGES Warmer World Integrative Activity workshop by the Future Earth core project PAGES (Past Global Changes) and the Oeschger Centre for Climate Change Research, University of Bern, is gratefully acknowledged. Additional funding by PAGES was provided to the plioVAR, PALSEA 2, QUIGS, the 2k network, C-peat, Global Paleofire 2 and OC3 PAGES working groups contributing to the Integrated Activity (see for an overview of all former and active PAGES working groups). We thank N. Rosenbloom for creating Fig. 2.

Author information




The content of this paper is the result of a PAGES workshop taking place in Bern, Switzerland, in April 2017, which most of the authors attended. All authors contributed to the literature assessment and the discussion of the results. H.F., K.J.M. and A.C.M. developed the concept of the paper and compiled the paper with support by all co-authors. All co-authors contributed to the discussion of the manuscript.

Corresponding authors

Correspondence to Hubertus Fischer or Katrin J. Meissner or Alan C. Mix.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Material.

Supplementary Tables

Supplementary Tables 1–5 and 8–11.

Supplementary Table 6

Supplementary Table 6.

Supplementary Table 7

Supplementary Table 7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fischer, H., Meissner, K.J., Mix, A.C. et al. Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nature Geosci 11, 474–485 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing