Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Earthquake nucleation and fault slip complexity in the lower crust of central Alaska

An Author Correction to this article was published on 28 June 2018

This article has been updated


Earthquakes start under conditions that are largely unknown. In laboratory analogue experiments and continuum models, earthquakes transition from slow-slipping, growing nucleation to fast-slipping rupture. In nature, earthquakes generally start abruptly, with no evidence for a nucleation process. Here we report evidence from a strike-slip fault zone in central Alaska of extended earthquake nucleation and of very-low-frequency earthquakes (VLFEs), a phenomenon previously reported only in subduction zone environments. In 2016, a VLFE transitioned into an earthquake of magnitude 3.7 and was preceded by a 12-hour-long accelerating foreshock sequence. Benefiting from 12 seismic stations deployed within 30 km of the epicentre, we identify coincident radiation of distinct high-frequency and low-frequency waves during 22 s of nucleation. The power-law temporal growth of the nucleation signal is quantitatively predicted by a model in which high-frequency waves are radiated from the vicinity of an expanding slow slip front. The observations reveal the continuity and complexity of slip processes near the bottom of the seismogenic zone of a strike-slip fault system in central Alaska.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Minto Flats fault zone of central Alaska.
Fig. 2: Seismic waveforms for the 2015 and 2016 events observed at stations FTGH (red traces) and F6TP (black traces).
Fig. 3: Phase coherence between foreshock signal and mainshock signal for the 2016 event, filtered between 1 and 10 Hz.
Fig. 4: Alternative interpretations for the two stages of nucleation and rupture.
Fig. 5: Comparison between rate-state modelling and observations of power-law growth of the rupture stage interpreted as nucleation.

Change history


  1. 1.

    Peng, Z. & Gomberg, J. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nat. Geosci. 3, 599–607 (2010).

    Article  Google Scholar 

  2. 2.

    Dodge, D. A., Beroza, G. C. & Ellsworth, W. L. Detailed observations of California foreshock sequences: implications for the earthquake initiation process. J. Geophys. Res. 101, 22371–22392 (1996).

    Article  Google Scholar 

  3. 3.

    McGuire, J. J., Boettcher, M. S. & Jordan, T. H. Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults. Nature 434, 457–461 (2005).

    Article  Google Scholar 

  4. 4.

    Bouchon, M. et al. Extended nucleation of the 1999 M w 7.6 Izmit earthquake. Science 331, 877–880 (2011).

    Article  Google Scholar 

  5. 5.

    Bouchon, M., Durand, V., Marsan, D., Karabulut, H. & Schmittbuhl, J. The long precursory phase of most large interplate earthquakes. Nat. Geosci. 6, 299–302 (2013).

    Article  Google Scholar 

  6. 6.

    Kato, A., Fukuda, J., Kumazawa, T., & Nakagawa, S. Accelerated nucleation of the 2014 Iquique, Chile M w 8.2 earthquake. Sci. Rep. 6, 24792 (2016).

    Article  Google Scholar 

  7. 7.

    Ogata, Y. Seismicity and geodetic anomalies in a wide area preceding the Niigata-Ken-Chuetsu earthquake of 23 October 2004, central Japan. J. Geophys. Res. 112, B10301 (2007).

    Article  Google Scholar 

  8. 8.

    Scuderi, M. M., Marone, C., Tinti, E., Di Stefano, G. & Collettini, C. Precursory changes in seismic velocity for the spectrum of earthquake failure modes. Nat. Geosci. 9, 695–702 (2016).

    Article  Google Scholar 

  9. 9.

    Schurr, B. et al. Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature 512, 299–302 (2014).

    Article  Google Scholar 

  10. 10.

    Mavrommatis, A. P., Segall, P., Uchida, N. & Johnson, K. M. Long-term acceleration of aseismic slip preceding the M w 9 Tohoku-oki earthquake: constraints from repeating earthquakes. Geophys. Res. Lett. 42, 9717–9725 (2015).

    Article  Google Scholar 

  11. 11.

    Obara, K. & Kato, A. Connecting slow earthquakes to huge earthquakes. Science 353, 253–257 (2016).

    Article  Google Scholar 

  12. 12.

    Ide, S., Beroza, G. C., Shelly, D. R. & Uchide, T. A scaling law for slow earthquakes. Nature 447, 76–79 (2007).

    Article  Google Scholar 

  13. 13.

    Kato, A. et al. Propagation of slow slip leading up to the 2011 M w 9.0 Tohoku-Oki earthquake. Science 335, 705–708 (2012).

    Article  Google Scholar 

  14. 14.

    Campillo, M. & Ionescu, I. R. Initiation of antiplane shear instability under slip dependent friction. J. Geophys. Res. 102, 20363–20371 (1997).

    Article  Google Scholar 

  15. 15.

    Dieterich, J. H. Earthquake nucleation on faults with rate- and state-dependent strength. Tectonophysics 211, 115–134 (1992).

    Article  Google Scholar 

  16. 16.

    Lapusta, N. & Rice, J. R. Nucleation and early seismic propagation of small and large events in a crustal earthquake model. J. Geophys. Res. 108, 2205 (2003).

    Article  Google Scholar 

  17. 17.

    Rubin, A. M. & Ampuero, J.-P. Earthquake nucleation on (aging) rate and state faults. J. Geophys. Res. 110, B11312 (2005).

    Article  Google Scholar 

  18. 18.

    Kaneko, Y. & Ampuero, J.-P. A mechanism for preseismic steady rupture fronts observed in laboratory experiments. Geophys. Res. Lett. 38, L21307 (2011).

    Article  Google Scholar 

  19. 19.

    Ohnaka, M. & Shen, L. Scaling of the shear rupture process from nucleation to dynamic propagation: implications of geometric irregularity of the rupturing surfaces. J. Geophys. Res. 104, 817–844 (1999).

    Article  Google Scholar 

  20. 20.

    Ben-David, O., Cohen, G. & Fineberg, J. The dynamics of the onset of frictional slip. Science 330, 211–214 (2010).

    Article  Google Scholar 

  21. 21.

    Nielsen, S., Taddeucci, J. & Vinciguerra, S. Experimental observation of stick-slip instability fronts. Geophys. J. Int. 180, 697–702 (2010).

    Article  Google Scholar 

  22. 22.

    McLaskey, G. C. & Kilgore, B. D. Foreshocks during the nucleation of stick-slip instability. J. Geophys. Res. Solid Earth 118, 2982–2997 (2013).

    Article  Google Scholar 

  23. 23.

    Latour, S., Schubnel, A., Nielsen, S., Madariaga, R. & Vinciguerra, S. Characterization of nucleation during laboratory earthquakes. Geophys. Res. Lett. 40, 5064–5069 (2013).

    Article  Google Scholar 

  24. 24.

    Ellsworth, W. L. & Beroza, G. C. Seismic evidence for an earthquake nucleation phase. Science 268, 851–855 (1995).

    Article  Google Scholar 

  25. 25.

    Mori, J. & Kanamori, H. Initial rupture of earthquakes in the 1995 Ridgecrest, California sequence. Geophys. Res. Lett. 23, 2437–2440 (1996).

    Article  Google Scholar 

  26. 26.

    Ito, Y. et al. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake. Tectonophysics 600, 14–26 (2013).

    Article  Google Scholar 

  27. 27.

    Linde, A. T., Suyehiro, K., Miura, S., Sacks, I. S. & Takagi, A. Episodic aseismic earthquake precursors. Nature 334, 513–515 (1988).

    Article  Google Scholar 

  28. 28.

    Tape, C., West, M., Silwal, V. & Ruppert, N. Earthquake nucleation and triggering on an optimally oriented fault. Earth. Planet. Sci. Lett. 363, 231–241 (2013).

    Article  Google Scholar 

  29. 29.

    Linde, A. T., Gladwin, M. T., Johnston, M. J. S., Gwyther, R. S. & Bilham, R. G. A slow earthquake sequence on the San Andreas fault. Nature 383, 65–68 (1996).

    Article  Google Scholar 

  30. 30.

    Ratchkovski, N. A. & Hansen, R. A. New constraints on tectonics of interior Alaska: earthquake locations, source mechanisms, and stress regime. Bull. Seismol. Soc. Am. 92, 998–1014 (2002).

    Article  Google Scholar 

  31. 31.

    Tape, C. et al. Transtensional tectonics of the Minto Flats fault zone and Nenana Basin, central Alaska. Bull. Seismol. Soc. Am. 105, 2081–2100 (2015).

    Article  Google Scholar 

  32. 32.

    Pollitz, F. F., Stein, R. S., Sevilgen, V. & Bürgmann, R. The 11 April 2012 east Indian Ocean earthquake triggered large aftershocks worldwide. Nature 490, 250–253 (2012).

    Article  Google Scholar 

  33. 33.

    Ito, Y., Obara, K., Shiomi, K., Sekine, S. & Hirose, H. Slow earthquakes coincident with episodic tremors and slow slip events. Science 315, 503–506 (2007).

    Article  Google Scholar 

  34. 34.

    Ghosh, A., Huesca-Pérez, E., Brodsky, E. & Ito, Y. Very low frequency earthquakes in Cascadia migrate with tremor. Geophys. Res. Lett. 42, 3228–3232 (2015).

    Article  Google Scholar 

  35. 35.

    Ide, S., Imanishi, K., Yoshida, Y., Beroza, G. C., & Shelly, D. R. Bridging the gap between seismically and geodetically detected slow earthquakes. Geophys. Res. Lett. 35, L10305 (2008).

    Article  Google Scholar 

  36. 36.

    Ide, S. Characteristics of slow earthquakes in the very low frequency band: application to the Cascadia subduction zone. J. Geophys. Res. Solid Earth 121, 5942–5952 (2016).

    Article  Google Scholar 

  37. 37.

    Ide, S. A Brownian walk model for slow earthquakes. Geophys. Res. Lett. 35, L17301 (2008).

    Article  Google Scholar 

  38. 38.

    Gomberg, J., Agnew, D. C. & Schwartz, S. Y. Alternative source models of very low frequency events. J. Geophys. Res. Solid Earth 121, 6722–6740 (2016).

    Article  Google Scholar 

  39. 39.

    Hawthorne, J. C. & Ampuero, J.-P. A phase coherence approach to identifying co-located earthquakes and tremor. Geophys. J. Int. 209, 623–642 (2017).

    Google Scholar 

  40. 40.

    Shearer, P. M., Prieto, G. A. & Hauksson, E. Comprehensive analysis of earthquake source spectra in southern California. J. Geophys. Res. 111, B06303 (2006).

    Article  Google Scholar 

  41. 41.

    Rogers, G. & Dragert, H. Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip. Science 300, 1942–1943 (2003).

    Article  Google Scholar 

  42. 42.

    Bosl, W. J. & Nur, A. Aftershocks and pore fluid diffusion following the 1992 Landers earthquake. J. Geophys. Res. 107, 2366 (2002).

    Article  Google Scholar 

  43. 43.

    Renard, F. et al. Critical evolution of damage toward system-size failure in crystalline rock. J. Geophys. Res. Solid Earth 123, 1969–1986 (2018).

    Article  Google Scholar 

  44. 44.

    Kaneko, Y., Nielsen, S. B. & Carpenter, B. M. The onset of laboratory earthquakes explained by nucleating rupture on a rate-and-state fault. J. Geophys. Res. Solid Earth 121, 6071–6091 (2016).

    Article  Google Scholar 

  45. 45.

    McLaskey, G. C. & Lockner, D. A. Preslip and cascade processes initiating laboratory stick slip. J. Geophys. Res. Solid Earth 119, 6323–6336 (2014).

    Article  Google Scholar 

  46. 46.

    Dublanchet, P. The dynamics of earthquake precursors controlled by effective friction. Geophys. J. Int. 212, 853–871 (2018).

    Article  Google Scholar 

  47. 47.

    Noda, H., Nakatani, M. & Hori, T. Large nucleation before large earthquakes is sometimes skipped due to cascade-up—implications from a rate and state simulation of faults with hierarchical asperities. J. Geophys. Res. Solid Earth 118, 2924–2952 (2013).

    Article  Google Scholar 

  48. 48.

    Rice, J. R. Spatio-temporal complexity of slip on a fault. J. Geophys. Res. 98, 9885–9907 (1993).

    Article  Google Scholar 

  49. 49.

    Ye, L., Lay, T., Kanamori, H. & Rivera, L. Rupture characteristics of major and great (M w ≥ 7.0) megathrust earthquakes from 1990 to 2015: 2. Depth dependence. J. Geophys. Res. Solid Earth 121, 845–863 (2016).

    Article  Google Scholar 

  50. 50.

    Zhu, L. & Helmberger, D. Advancement in source estimation techniques using broadband regional seismograms. Bull. Seismol. Soc. Am. 86, 1634–1641 (1996).

    Google Scholar 

  51. 51.

    Vallée, M. Stabilizing the empirical Green function analysis: development of the projected Landweber method. Bull. Seismol. Soc. Am. 94, 394–409 (2004).

    Article  Google Scholar 

  52. 52.

    Ni, S., Helmberger, D. & Kanamori, H. Energy radiation from the Sumatra earthquake. Nature 434, 582 (2005).

    Article  Google Scholar 

  53. 53.

    Lapusta, N. & Liu, Y. Three-dimensional boundary integral modeling of spontaneous earthquake sequences and aseismic slip. J. Geophys. Res. 114, B09303 (2009).

    Article  Google Scholar 

  54. 54.

    Dieterich, J. H. Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res. Solid Earth 84, 2161–2168 (1979).

    Article  Google Scholar 

  55. 55.

    Ruina, A. L. Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370 (1983).

    Article  Google Scholar 

  56. 56.

    Silwal, V. Seismic moment tensors for six events in the Minto Flats fault zone, 2012–2016. ScholarWorks@UA (2018).

Download references


Seismic instruments, data archiving and data access were supported by the U.S. National Science Foundation grants EAR-1352668 and EAR-1645313, the Alaska Earthquake Center, the IRIS Data Management Center and the PASSCAL Instrument Center. Y.K. was supported by Rutherford Discovery Fellowship from the Royal Society of New Zealand.

Author information




All authors contributed to the manuscript. C.T., S.H. and V.S. performed the seismological analyses of the two events. J.H. performed the phase coherence analysis (Fig. 3). Y.K., J.P.A. and J.H. contributed the rate-and-state modelling and interpretation. C.J. performed the source time function estimation. C.T., N.R., K.S. and M.E.W. were responsible for the deployment of FLATS seismic stations. N.R. and S.H. discovered the high-frequency and low-frequency signals for the 2015 event. S.H. discovered the low-frequency foreshock (VLFE) of the 2016 event.

Corresponding author

Correspondence to Carl Tape.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tape, C., Holtkamp, S., Silwal, V. et al. Earthquake nucleation and fault slip complexity in the lower crust of central Alaska. Nature Geosci 11, 536–541 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing