Review Article | Published:

Global energetics and local physics as drivers of past, present and future monsoons


Global constraints on momentum and energy govern the variability of the rainfall belt in the intertropical convergence zone and the structure of the zonal mean tropical circulation. The continental-scale monsoon systems are also facets of a momentum- and energy-constrained global circulation, but their modern and palaeo variability deviates substantially from that of the intertropical convergence zone. The mechanisms underlying deviations from expectations based on the longitudinal mean budgets are neither fully understood nor simulated accurately. We argue that a framework grounded in global constraints on energy and momentum yet encompassing the complexities of monsoon dynamics is needed to identify the causes of the mismatch between theory, models and observations, and ultimately to improve regional climate projections. In a first step towards this goal, disparate regional processes must be distilled into gross measures of energy flow in and out of continents and between the surface and the tropopause, so that monsoon dynamics may be coherently diagnosed across modern and palaeo observations and across idealized and comprehensive simulations. Accounting for zonal asymmetries in the circulation, land/ocean differences in surface fluxes, and the character of convective systems, such a monsoon framework would integrate our understanding at all relevant scales: from the fine details of how moisture and energy are lifted in the updrafts of thunderclouds, up to the global circulations.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).

  2. 2.

    Harrison, S. P. et al. Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat. Clim. Change 5, 735–743 (2015).

  3. 3.

    Harrison, S. P. et al. Mid-Holocene climates of the Americas: a dynamical response to changed seasonality. Clim. Dynam. 20, 663–688 (2003).

  4. 4.

    Metcalfe, S. E., Barron, J. A. & Davies, S. J. The Holocene history of the North American Monsoon: ‘known knowns’ and ‘known unknowns’ in understanding its spatial and temporal complexity. Quat. Sci. Rev. 120, 1–27 (2015).

  5. 5.

    Chen, F., Yu, Z., Yang, M., Ito, E. & Wang, S. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat. Sci. Rev. 27, 351–364 (2008).

  6. 6.

    Li, Y., Wang, N., Zhou, X., Zhang, C. & Wang, Y. Synchronous or asynchronous Holocene Indian and East Asian summer monsoon evolution: a synthesis on Holocene Asian summer monsoon simulations, records and modern monsoon indices. Glob. Planet. Change 116, 30–40 (2014).

  7. 7.

    Hoelzmann, P., Jolly, D. & Harrison, S. P. Mid-Holocene land-surface conditions in northern Africa and the Arabian Peninsula: a data set for the analysis of biogeophysical feedbacks in the climate system. Glob. Biogeochem. Cycles 12, 35–51 (1998).

  8. 8.

    Kuper, R. & Kröpelin, S. Climate-controlled Holocene occupation in the Sahara: motor of Africa’s evolution. Science 313, 803–807 (2006).

  9. 9.

    Perez-Sanz, A., Li, G., González-Sampériz, P. & Harrison, S. P. Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and northern Africa in the CMIP5 simulations. Clim. Past 10, 551–568 (2014).

  10. 10.

    Timm, O., Köhler, P., Timmermann, A. & Menviel, L. Mechanisms for the onset of the African humid period and Sahara greening 14.5–11 ka BP*. J. Clim. 23, 2612–2633 (2010).

  11. 11.

    Kutzbach, J., Bonan, G. B., Foley, J. & Harrison, S. P. Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature 384, 623–626 (1996).

  12. 12.

    Pausata, F. S. R., Messori, G. & Zhang, Q. Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period. Earth Planet. Sci. Lett. 434, 298–307 (2016).

  13. 13.

    Boos, W. R. & Korty, R. L. Regional energy budget control of the intertropical convergence zone and application to mid-Holocene rainfall. Nat. Geosci. 9, 892–897 (2016).

  14. 14.

    Singarayer, J. S. & Burrough, S. L. Interhemispheric dynamics of the African rainbelt during the late Quaternary. Quat. Sci. Rev. 124, 48–67 (2015).

  15. 15.

    Prado, L. F., Wainer, I., Chiessi, C. M., Ledru, M. P. & Turcq, B. A mid-Holocene climate reconstruction for eastern South America. Clim. Past 9, 2117–2133 (2013).

  16. 16.

    Steinke, S. et al. Mid- to late-Holocene Australian–Indonesian summer monsoon variability. Quat. Sci. Rev. 93, 142–154 (2014).

  17. 17.

    Tanaka, H. L., Ishizaki, N. & Nohara, D. Intercomparison of the intensities and trends of Hadley, Walker and monsoon circulations in the global warming projections. SOLA 1, 077–080 (2005).

  18. 18.

    Biasutti, M. Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. 118, 1613–1623 (2013).

  19. 19.

    Seth, A. et al. CMIP5 projected changes in the annual cycle of precipitation in monsoon regions. J. Clim. 26, 7328–7351 (2013).

  20. 20.

    Schneider, T., Bischoff, T. & Haug, G. H. Migrations and dynamics of the intertropical convergence zone. Nature 513, 45–53 (2014).

  21. 21.

    Emanuel, K., Neelin, J. & Bretherton, C. S. On large-scale circulations in convecting atmospheres. Q. J. R. Meteorol. Soc. 120, 1111–1143 (1994).

  22. 22.

    Nie, J., Boos, W. R. & Kuang, Z. Observational evaluation of a convective quasi-equilibrium view of monsoons. J. Clim. 23, 4416–4428 (2010).

  23. 23.

    Webster, P., Magana, V. O. & Palmer, T. N. Monsoons: processes, predictability, and the prospects for prediction. J. Geophys. Res. 103, 14451–14510 (1998).

  24. 24.

    Donohoe, A., Marshall, J., Ferreira, D. & Mcgee, D. The relationship between ITCZ location and cross-equatorial atmospheric heat transport: from the seasonal cycle to the Last Glacial Maximum. J. Clim. 26, 3597–3618 (2013).

  25. 25.

    Wang, B. & Ding, Q. Global monsoon: dominant mode of annual variation in the tropics. Dynam. Atmos. Oceans 44, 165–183 (2008).

  26. 26.

    Wang, P. X. et al. The global monsoon across timescales: coherent variability of regional monsoons. Clim. Past 10, 2007–2052 (2014).

  27. 27.

    Mohtadi, M., Prange, M. & Steinke, S. Palaeoclimatic insights into forcing and response of monsoon rainfall. Nature 533, 191–199 (2016).

  28. 28.

    Kang, S. M., Held, I. M., Frierson, D. M. W. & Zhao, M. The response of the ITCZ to extratropical thermal forcing: idealized slab-ocean experiments with a GCM. J. Clim. 21, 3521–3532 (2008).

  29. 29.

    Chiang, J. C. H. & Friedman, A. R. Extratropical cooling, interhemispheric thermal gradients, and tropicalclimate change. Annu. Rev. Earth Planet. Sci. 40, 383–412 (2012).

  30. 30.

    Held, I. M. & Hou, A. Y. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37, 515–533 (1980).

  31. 31.

    Plumb, R. A. in The Global Circulation of the Atmosphere (eds Schneider, T. & Sobel, A. H.) 252–266 (Princeton Univ. Press, Princeton, 2007).

  32. 32.

    Schneider, T. The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci. 34, 655–688 (2006).

  33. 33.

    Bordoni, S. & Schneider, T. Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci. 1, 515–519 (2008).

  34. 34.

    Shaw, T. A. On the role of planetary-scale waves in the abrupt seasonal transition of the Northern Hemisphere general circulation. J. Atmos. Sci. 71, 1724–1746 (2014).

  35. 35.

    Zhai, J. & Boos, W. R. Regime transitions of cross-equatorial Hadley circulations with zonally asymmetric thermal forcings. J. Atmos. Sci. 72, 3800–3818 (2015).

  36. 36.

    Kang, S. M., Frierson, D. M. W. & Held, I. M. The tropical response to extratropical thermal forcing in an idealized GCM: the importance of radiative feedbacks and convective parameterization. J. Atmos. Sci. 66, 2812–2827 (2009).

  37. 37.

    Voigt, A., Bony, S., Dufresne, J.-L. & Stevens, B. The radiative impact of clouds on the shift of the Intertropical Convergence Zone. Geophys. Res. Lett. 41, 4308–4315 (2014).

  38. 38.

    Voigt, A. & Shaw, T. A. Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci. 8, 102–106 (2015).

  39. 39.

    Frierson, D. M. W. & Hwang, Y.-T. Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Clim. 25, 720–733 (2012).

  40. 40.

    Mcgee, D., Donohoe, A., Marshall, J. & Ferreira, D. Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. Earth Planet. Sci. Lett. 390, 69–79 (2014).

  41. 41.

    Frierson, D. M. W. et al. Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci. 6, 940–944 (2013).

  42. 42.

    Swann, A. L. S., Fung, I. Y., Liu, Y. & Chiang, J. C. H. Remote vegetation feedbacks and the mid-Holocene Green Sahara. J. Clim. 27, 4857–4870 (2014).

  43. 43.

    Hwang, Y.-T., Frierson, D. M. W. & Kang, S. M. Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett. 40, 2845–2850 (2013).

  44. 44.

    Hwang, Y.-T., Xie, S.-P., Deser, C. & Kang, S. M. Connecting tropical climate change with Southern Oceanheat uptake. Geophys. Res. Lett. 44, 9449–9457 (2017).

  45. 45.

    Shaw, T. A., Voigt, A., Kang, S. M. & Seo, J. Response of the Intertropical Convergence Zone to zonally asymmetric subtropical surface forcings. Geophys. Res. Lett. 42, 9961–9969 (2015).

  46. 46.

    Kay, J. E. et al. Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J. Clim. 29, 4617–4636 (2016).

  47. 47.

    Hawcroft, M. et al. Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: global impacts of biases in a coupled model. Clim. Dynam. 48, 2279–2295 (2016).

  48. 48.

    Roberts, W. H. G., Valdes, P. J. & Singarayer, J. S. Can energy fluxes be used to interpret glacial/interglacial precipitation changes in the tropics? Geophys. Res. Lett. 44, 6373–6382 (2017).

  49. 49.

    Held, I. M. The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci. 58, 943–948 (2001).

  50. 50.

    Marshall, J., Donohoe, A., Ferreira, D. & McGee, D. The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone. Clim. Dynam. 42, 1967–1979 (2014).

  51. 51.

    Fedorov, A. V., Burls, N. J., Lawrence, K. T. & Peterson, L. C. Tightly linked zonal and meridional sea surface temperature gradients over the past five million years. Nat. Geosci. 8, 2577–2980 (2015).

  52. 52.

    Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

  53. 53.

    Neelin, J., Munnich, M., Su, H., Meyerson, J. E. & Holloway, C. E. Tropical drying trends in global warming models and observations. Proc. Natl Acad. Sci. USA 103, 6110–6115 (2006).

  54. 54.

    Byrne, M. P. & Schneider, T. Narrowing of the ITCZ in a warming climate: physical mechanisms. Geophys. Res. Lett. 43, 11350–11357 (2016).

  55. 55.

    Lintner, B. R. & Neelin, J. A prototype for convective margin shifts. Geophys. Res. Lett. 34, L05812 (2007).

  56. 56.

    Singarayer, J. S., Valdes, P. J. & Roberts, W. H. G. Ocean dominated expansion and contraction of the late Quaternary tropical rainbelt. Sci. Rep. 7, 9382 (2017).

  57. 57.

    Wallace, J. et al. On the structure and evolution of ENSO-related climate variability in the tropical Pacific: lessons from TOGA. J. Geophys. Res. 103, 14241–14259 (1998).

  58. 58.

    Huang, P., Xie, S.-P., Hu, K., Huang, G. & Huang, R. Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci. 6, 357–361 (2013).

  59. 59.

    Chadwick, R., Good, P., Andrews, T. & Martin, G. Surface warming patterns drive tropical rainfall pattern responses to CO2 forcing on all timescales. Geophys. Res. Lett. 41, 610–615 (2014).

  60. 60.

    Hsu, Y.-H., Chou, C. & Wei, K.-Y. Land-ocean asymmetry of tropical precipitation changes in the mid-Holocene. J. Clim. 23, 4133–4151 (2010).

  61. 61.

    Liu, X., Battisti, D. S. & Donohoe, A. Tropical precipitation and cross-equatorial ocean heat transport during the mid-Holocene. J. Clim. 30, 3529–3547 (2017).

  62. 62.

    Back, L. E. & Bretherton, C. S. Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett. 33, 392 (2006).

  63. 63.

    Inoue, K. & Back, L. E. Gross moist stability analysis: assessment of satellite-based products in the GMS plane. J. Atmos. Sci. 74, 1819–1837 (2017).

  64. 64.

    Shaw, T. A. & Pauluis, O. Tropical and subtropical meridional latent heat transports by disturbances to the zonal mean and their role in the general circulation. J. Atmos. Sci. 69, 1872–1889 (2012).

  65. 65.

    Sobel, A. H. & Neelin, J. The boundary layer contribution to intertropical convergence zones in the quasi-equilibrium tropical circulation model framework. Theor. Comp. Fluid Dyn. 20, 323–350 (2006).

  66. 66.

    Kelly, P. & Mapes, B. Asian monsoon forcing of subtropical easterlies in the Community Atmosphere Model: summer climate implications for the western Atlantic. J. Clim. 26, 2741–2755 (2013).

  67. 67.

    Chou, C. & Neelin, J. D. Mechanisms limiting the northward extent of the northern summer monsoons over North America, Asia, and Africa*. J. Clim. 16, 406–425 (2003).

  68. 68.

    Adam, O., Bischoff, T. & Schneider, T. Seasonal and interannual variations of the energy flux equator and ITCZ. Part II: zonally varying shifts of the ITCZ. J. Clim. 29, 3219–3230 (2016).

  69. 69.

    Hagos, S. M. & Zhang, C. Diabatic heating, divergent circulation and moisture transport in the African monsoon system. Q. J. Royal Meteorol. Soc. 136, 411–425 (2009).

  70. 70.

    Hill, S. A., Ming, Y., Held, I. M. & Zhao, M. A moist static energy budget–based analysis of the Sahel rainfall response to uniform oceanic warming. J. Clim. 30, 5637–5660 (2017).

  71. 71.

    Taylor, C. M. et al. Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nat. Geosci. 4, 430–433 (2011).

  72. 72.

    Boos, W. R. & Kuang, Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463, 218–222 (2010).

  73. 73.

    Giannini, A. et al. A unifying view of climate change in the Sahel linking intra-seasonal, interannual and longer time scales. Environ. Res. Lett. 8, 024010 (2013).

  74. 74.

    Park, J.-Y., Bader, J. & Matei, D. Northern-hemispheric differential warming is the key to understanding the discrepancies in the projected Sahel rainfall. Nat. Commun. 6, 5985 (2015).

  75. 75.

    Liu, Y., Chiang, J. C. H., Chou, C. & Patricola, C. M. Atmospheric teleconnection mechanisms of extratropical North Atlantic SST influence on Sahel rainfall. Clim. Dynam. 43, 2797–2811 (2014).

  76. 76.

    Chiang, J. C. H. et al. Role of seasonal transitions and westerly jets in East Asian paleoclimate. Quat. Sci. Rev. 108, 111–129 (2015).

  77. 77.

    Rowell, D. P. The impact of Mediterranean SSTs on the Sahelian rainfall season. J. Clim. 16, 849–862 (2003).

  78. 78.

    Zhai, J. & Boos, W. R. The drying tendency of shallow meridional circulations in monsoons. Q. J. Royal Meteorol. Soc. 143, 2655–2664 (2017).

  79. 79.

    Bretherton, C. S., Peters, M. E. & Back, L. E. Relationships between water vapor path and precipitation over the tropical oceans. J. Clim. 17, 1517–1528 (2004).

  80. 80.

    Ahmed, F. & Schumacher, C. Convective and stratiform components of the precipitation-moisture relationship. Geophys. Res. Lett. 42, 10453–10462 (2015).

  81. 81.

    Bergemann, M. & Jakob, C. How important is tropospheric humidity for coastal rainfall in the tropics? Geophys. Res. Lett. 43, 5860–5868 (2016).

  82. 82.

    Zipser, E., Liu, C., Cecil, D., Nesbitt, S. & Yorty, D. Where are the most intense thunderstorms on Earth? Bull. Am. Met. Soc. 87, 1057–1071 (2006).

  83. 83.

    Liu, C. & Zipser, E. J. “Warm Rain” in the tropics: seasonal and regional distributions based on 9 yr of TRMM data. J. Cim 22, 767–779 (2009).

  84. 84.

    Davies, L., Jakob, C., May, P., Kumar, V. V. & Xie, S. Relationships between the large-scale atmosphere and the small-scale convective state for Darwin, Australia. J. Geophys. Res. 118, 11534–11545 (2013).

  85. 85.

    Dorrestijn, J., Crommelin, D. T., Siebesma, A. P., Jonker, H. J. J. & Jakob, C. Stochastic parameterization of convective area fractions with a multicloud model inferred from observational data. J. Atmos. Sci. 72, 854–869 (2015).

  86. 86.

    Song, H. et al. Evaluation of cloud fraction simulated by seven SCMs against the ARM observations at the SGP site*. J. Clim. 27, 6698–6719 (2014).

  87. 87.

    Martin, G. M. et al. Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J. Clim. 23, 5933–5957 (2010).

  88. 88.

    Willetts, P. D. et al. Moist convection and its upscale effects in simulations of the Indian monsoon with explicit and parametrized convection. Q. J. Royal Meteorol. Soc. 143, 1073–1085 (2017).

  89. 89.

    Marsham, J. H. et al. The role of moist convection in the West African monsoon system: insights from continental-scale convection-permitting simulations. Geophys. Res. Lett. 40, 1843–1849 (2013).

  90. 90.

    Daleu, C. L. et al. Intercomparison of methods of coupling between convection and large-scale circulation: 1. Comparison over uniform surface conditions. J. Adv. Model. Earth Syst. 7, 1576–1601 (2015).

  91. 91.

    Anber, U., Gentine, P., Wang, S. & Sobel, A. H. Fog and rain in the Amazon. Proc. Natl Acad. Sci. USA 112, 11473–11477 (2015).

  92. 92.

    Cronin, T. W., Emanuel, K. A. & Molnar, P. Island precipitation enhancement and the diurnal cycle in radiative-convective equilibrium. Q. J. Royal Meteorol. Soc. 141, 1017–1034 (2015).

  93. 93.

    Braconnot, P. et al. Impact of different convective cloud schemes on the simulation of the tropical seasonal cycle in a coupled ocean–atmosphere model. Clim. Dynam. 29, 501–520 (2007).

  94. 94.

    Coats, S. & Karnauskas, K. Are simulated and observed twentieth century tropical pacific sea surface temperature trends significant relative to internal variability? Geophys. Res. Lett. 44, 9928–9937 (2017).

  95. 95.

    Neelin, J. & Held, I. M. Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev. 115, 3–12 (1987).

  96. 96.

    Raymond, D., Sessions, S., Sobel, A. H. & Fuchs, Z. The mechanics of gross moist stability. J. Adv. Model. Earth Syst. 1, 9 (2009).

  97. 97.

    Kageyama, M. et al. PMIP4-CMIP6: the contribution of the Paleoclimate Modelling Intercomparison Project to CMIP6. Geosci. Model Dev. 11, 1033–1057 (2016).

  98. 98.

    Voigt, A. et al. The tropical rain belts with an annual cycle and a continent model intercomparison project: TRACMIP. J. Adv. Model. Earth Syst. 8, 1868–1891 (2016).

  99. 99.

    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

  100. 100.

    Zhou, T. et al. GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project. Geosci. Model Dev. 9, 3589–3604 (2016).

  101. 101.

    Huffman, G. et al. Integrated Multi-satellitE Retrievals for GPM (IMERG) Version 4.4. (NASA’s Precipitation Processing Center, accessed 21 December 2015);

  102. 102.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Royal Meteorol. Soc. 137, 553–597 (2011).

  103. 103.

    Huffman, G. J. et al. The TRMM Multi-satellite Precipitation Analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J. Hydrometeorol. 8, 38–55 (2007).

  104. 104.

    Biasutti, M., Yuter, S. E., Burleyson, C. D. & Sobel, A. H. Very high resolution rainfall patterns measured by TRMM precipitation radar: seasonal and diurnal cycles. Clim. Dynam. 39, 239–258 (2011).

  105. 105.

    Villarini, G. & Krajewski, W. F. Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv. Geophys. 31, 107–129 (2009).

  106. 106.

    Bartlein, P. J. et al. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Clim. Dynam. 37, 775–802 (2011).

  107. 107.

    Perez-Sanz, A., Li, G., González-Sampériz, P. & Harrison, S. P. Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and northern Africa in the CMIP5 simulations. Clim Past. 10, 551–568 (2014).

  108. 108.

    Otto-Bliesner, B. L. et al. Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation. Science 346, 1223–1227 (2014).

  109. 109.

    Xie, P. & Arkin, P. A. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc. 78, 2539–2558 (1997).

  110. 110.

    Kummerow, C. et al. The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Ocean. Technol. 15, 809–817 (1998).

  111. 111.

    Rienecker, M. M. et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 24, 3624–3648 (2011).

Download references


We gratefully acknowledge the contributors to the workshop ‘Monsoons & ITCZ: the annual cycle in the Holocene and the future’, held at Columbia University in September 2015: the original idea for this Review Article was born of the insights and excitement engendered by their results and from the lively community discussion of ideas and approaches. The workshop was conceived under the aegis of the World Climate Research Program (WCRP) Grand Challenge on Cloud Circulation and Climate Sensitivity, and was made possible by the generous support of the Columbia Climate Center and the Columbia Initiative on Extreme Weather and Climate. NSF award AGS-1536461 supported the participation of early career scientists. We thank A. Funk for the analysis displayed in Fig. 4. We gratefully acknowledge the National Aeronautic and Space Administration (NASA) for TRMM3B42 and GPM rainfall data, TRMM2A23 and TRMM2A25 reflectivities, and MERRA reanalysis; the National Oceanic and Atmospheric Administration (NOAA) for the CMAP rainfall data; the European Centre for Medium Range Weather Forecasting (ECMWF) for the ERA Interim reanalysis; and the WCRP’s Working Group on Coupled Modelling and all participating modelling centres for CMIP5 and PMIP3 data. M.B., A.V. and J.S. are supported by NSF award AGS-1565522. M.B. is supported by DOE award DE-SC0014423. A.V. is supported by the German Ministry of Education and Research (BMBF) and FONA: Research for Sustainable Development ( under grant agreement 01LK1509A. S.P.H. acknowledges support from the ERC-funded project GC2.0 (Global Change 2.0: Unlocking the past for a clearer future, grant number 694481).

Author information

M.B. led the writing process and produced Fig. 1 (from an idea by B.E.M.), Fig. 2 (from data provided by S.P.H. and P.B.), and Fig. 3 (in collaboration with W.R.B. and A.V.). C.S. produced Fig. 4. All authors collaboratively drafted the outline of the paper and greatly contributed to the writing process.

Competing interests

The authors declare no competing interests.

Correspondence to Michela Biasutti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Distinct tropical convection systems are organized in a planetary-scale rain belt.
Fig. 2: Palaeo changes in rainfall test comprehensive models and theoretical simplifications.
Fig. 3: Rainfall in the ITCZ and in monsoons is linked to planetary and regional fluxes of energy.
Fig. 4: The aggregate character of convective systems presents regional differences.