Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Global energetics and local physics as drivers of past, present and future monsoons

Abstract

Global constraints on momentum and energy govern the variability of the rainfall belt in the intertropical convergence zone and the structure of the zonal mean tropical circulation. The continental-scale monsoon systems are also facets of a momentum- and energy-constrained global circulation, but their modern and palaeo variability deviates substantially from that of the intertropical convergence zone. The mechanisms underlying deviations from expectations based on the longitudinal mean budgets are neither fully understood nor simulated accurately. We argue that a framework grounded in global constraints on energy and momentum yet encompassing the complexities of monsoon dynamics is needed to identify the causes of the mismatch between theory, models and observations, and ultimately to improve regional climate projections. In a first step towards this goal, disparate regional processes must be distilled into gross measures of energy flow in and out of continents and between the surface and the tropopause, so that monsoon dynamics may be coherently diagnosed across modern and palaeo observations and across idealized and comprehensive simulations. Accounting for zonal asymmetries in the circulation, land/ocean differences in surface fluxes, and the character of convective systems, such a monsoon framework would integrate our understanding at all relevant scales: from the fine details of how moisture and energy are lifted in the updrafts of thunderclouds, up to the global circulations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distinct tropical convection systems are organized in a planetary-scale rain belt.
Fig. 2: Palaeo changes in rainfall test comprehensive models and theoretical simplifications.
Fig. 3: Rainfall in the ITCZ and in monsoons is linked to planetary and regional fluxes of energy.
Fig. 4: The aggregate character of convective systems presents regional differences.

Similar content being viewed by others

References

  1. Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).

    Google Scholar 

  2. Harrison, S. P. et al. Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat. Clim. Change 5, 735–743 (2015).

    Google Scholar 

  3. Harrison, S. P. et al. Mid-Holocene climates of the Americas: a dynamical response to changed seasonality. Clim. Dynam. 20, 663–688 (2003).

    Google Scholar 

  4. Metcalfe, S. E., Barron, J. A. & Davies, S. J. The Holocene history of the North American Monsoon: ‘known knowns’ and ‘known unknowns’ in understanding its spatial and temporal complexity. Quat. Sci. Rev. 120, 1–27 (2015).

    Google Scholar 

  5. Chen, F., Yu, Z., Yang, M., Ito, E. & Wang, S. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat. Sci. Rev. 27, 351–364 (2008).

    Google Scholar 

  6. Li, Y., Wang, N., Zhou, X., Zhang, C. & Wang, Y. Synchronous or asynchronous Holocene Indian and East Asian summer monsoon evolution: a synthesis on Holocene Asian summer monsoon simulations, records and modern monsoon indices. Glob. Planet. Change 116, 30–40 (2014).

    Google Scholar 

  7. Hoelzmann, P., Jolly, D. & Harrison, S. P. Mid-Holocene land-surface conditions in northern Africa and the Arabian Peninsula: a data set for the analysis of biogeophysical feedbacks in the climate system. Glob. Biogeochem. Cycles 12, 35–51 (1998).

    Google Scholar 

  8. Kuper, R. & Kröpelin, S. Climate-controlled Holocene occupation in the Sahara: motor of Africa’s evolution. Science 313, 803–807 (2006).

    Google Scholar 

  9. Perez-Sanz, A., Li, G., González-Sampériz, P. & Harrison, S. P. Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and northern Africa in the CMIP5 simulations. Clim. Past 10, 551–568 (2014).

    Google Scholar 

  10. Timm, O., Köhler, P., Timmermann, A. & Menviel, L. Mechanisms for the onset of the African humid period and Sahara greening 14.5–11 ka BP*. J. Clim. 23, 2612–2633 (2010).

    Google Scholar 

  11. Kutzbach, J., Bonan, G. B., Foley, J. & Harrison, S. P. Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature 384, 623–626 (1996).

    Google Scholar 

  12. Pausata, F. S. R., Messori, G. & Zhang, Q. Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period. Earth Planet. Sci. Lett. 434, 298–307 (2016).

    Google Scholar 

  13. Boos, W. R. & Korty, R. L. Regional energy budget control of the intertropical convergence zone and application to mid-Holocene rainfall. Nat. Geosci. 9, 892–897 (2016).

    Google Scholar 

  14. Singarayer, J. S. & Burrough, S. L. Interhemispheric dynamics of the African rainbelt during the late Quaternary. Quat. Sci. Rev. 124, 48–67 (2015).

    Google Scholar 

  15. Prado, L. F., Wainer, I., Chiessi, C. M., Ledru, M. P. & Turcq, B. A mid-Holocene climate reconstruction for eastern South America. Clim. Past 9, 2117–2133 (2013).

    Google Scholar 

  16. Steinke, S. et al. Mid- to late-Holocene Australian–Indonesian summer monsoon variability. Quat. Sci. Rev. 93, 142–154 (2014).

    Google Scholar 

  17. Tanaka, H. L., Ishizaki, N. & Nohara, D. Intercomparison of the intensities and trends of Hadley, Walker and monsoon circulations in the global warming projections. SOLA 1, 077–080 (2005).

    Google Scholar 

  18. Biasutti, M. Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. 118, 1613–1623 (2013).

    Google Scholar 

  19. Seth, A. et al. CMIP5 projected changes in the annual cycle of precipitation in monsoon regions. J. Clim. 26, 7328–7351 (2013).

    Google Scholar 

  20. Schneider, T., Bischoff, T. & Haug, G. H. Migrations and dynamics of the intertropical convergence zone. Nature 513, 45–53 (2014).

    Google Scholar 

  21. Emanuel, K., Neelin, J. & Bretherton, C. S. On large-scale circulations in convecting atmospheres. Q. J. R. Meteorol. Soc. 120, 1111–1143 (1994).

    Google Scholar 

  22. Nie, J., Boos, W. R. & Kuang, Z. Observational evaluation of a convective quasi-equilibrium view of monsoons. J. Clim. 23, 4416–4428 (2010).

    Google Scholar 

  23. Webster, P., Magana, V. O. & Palmer, T. N. Monsoons: processes, predictability, and the prospects for prediction. J. Geophys. Res. 103, 14451–14510 (1998).

    Google Scholar 

  24. Donohoe, A., Marshall, J., Ferreira, D. & Mcgee, D. The relationship between ITCZ location and cross-equatorial atmospheric heat transport: from the seasonal cycle to the Last Glacial Maximum. J. Clim. 26, 3597–3618 (2013).

    Google Scholar 

  25. Wang, B. & Ding, Q. Global monsoon: dominant mode of annual variation in the tropics. Dynam. Atmos. Oceans 44, 165–183 (2008).

    Google Scholar 

  26. Wang, P. X. et al. The global monsoon across timescales: coherent variability of regional monsoons. Clim. Past 10, 2007–2052 (2014).

    Google Scholar 

  27. Mohtadi, M., Prange, M. & Steinke, S. Palaeoclimatic insights into forcing and response of monsoon rainfall. Nature 533, 191–199 (2016).

    Google Scholar 

  28. Kang, S. M., Held, I. M., Frierson, D. M. W. & Zhao, M. The response of the ITCZ to extratropical thermal forcing: idealized slab-ocean experiments with a GCM. J. Clim. 21, 3521–3532 (2008).

    Google Scholar 

  29. Chiang, J. C. H. & Friedman, A. R. Extratropical cooling, interhemispheric thermal gradients, and tropicalclimate change. Annu. Rev. Earth Planet. Sci. 40, 383–412 (2012).

    Google Scholar 

  30. Held, I. M. & Hou, A. Y. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37, 515–533 (1980).

    Google Scholar 

  31. Plumb, R. A. in The Global Circulation of the Atmosphere (eds Schneider, T. & Sobel, A. H.) 252–266 (Princeton Univ. Press, Princeton, 2007).

  32. Schneider, T. The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci. 34, 655–688 (2006).

    Google Scholar 

  33. Bordoni, S. & Schneider, T. Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci. 1, 515–519 (2008).

    Google Scholar 

  34. Shaw, T. A. On the role of planetary-scale waves in the abrupt seasonal transition of the Northern Hemisphere general circulation. J. Atmos. Sci. 71, 1724–1746 (2014).

    Google Scholar 

  35. Zhai, J. & Boos, W. R. Regime transitions of cross-equatorial Hadley circulations with zonally asymmetric thermal forcings. J. Atmos. Sci. 72, 3800–3818 (2015).

    Google Scholar 

  36. Kang, S. M., Frierson, D. M. W. & Held, I. M. The tropical response to extratropical thermal forcing in an idealized GCM: the importance of radiative feedbacks and convective parameterization. J. Atmos. Sci. 66, 2812–2827 (2009).

    Google Scholar 

  37. Voigt, A., Bony, S., Dufresne, J.-L. & Stevens, B. The radiative impact of clouds on the shift of the Intertropical Convergence Zone. Geophys. Res. Lett. 41, 4308–4315 (2014).

    Google Scholar 

  38. Voigt, A. & Shaw, T. A. Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci. 8, 102–106 (2015).

    Google Scholar 

  39. Frierson, D. M. W. & Hwang, Y.-T. Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Clim. 25, 720–733 (2012).

    Google Scholar 

  40. Mcgee, D., Donohoe, A., Marshall, J. & Ferreira, D. Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. Earth Planet. Sci. Lett. 390, 69–79 (2014).

    Google Scholar 

  41. Frierson, D. M. W. et al. Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci. 6, 940–944 (2013).

    Google Scholar 

  42. Swann, A. L. S., Fung, I. Y., Liu, Y. & Chiang, J. C. H. Remote vegetation feedbacks and the mid-Holocene Green Sahara. J. Clim. 27, 4857–4870 (2014).

    Google Scholar 

  43. Hwang, Y.-T., Frierson, D. M. W. & Kang, S. M. Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett. 40, 2845–2850 (2013).

    Google Scholar 

  44. Hwang, Y.-T., Xie, S.-P., Deser, C. & Kang, S. M. Connecting tropical climate change with Southern Oceanheat uptake. Geophys. Res. Lett. 44, 9449–9457 (2017).

    Google Scholar 

  45. Shaw, T. A., Voigt, A., Kang, S. M. & Seo, J. Response of the Intertropical Convergence Zone to zonally asymmetric subtropical surface forcings. Geophys. Res. Lett. 42, 9961–9969 (2015).

    Google Scholar 

  46. Kay, J. E. et al. Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J. Clim. 29, 4617–4636 (2016).

    Google Scholar 

  47. Hawcroft, M. et al. Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: global impacts of biases in a coupled model. Clim. Dynam. 48, 2279–2295 (2016).

    Google Scholar 

  48. Roberts, W. H. G., Valdes, P. J. & Singarayer, J. S. Can energy fluxes be used to interpret glacial/interglacial precipitation changes in the tropics? Geophys. Res. Lett. 44, 6373–6382 (2017).

    Google Scholar 

  49. Held, I. M. The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci. 58, 943–948 (2001).

    Google Scholar 

  50. Marshall, J., Donohoe, A., Ferreira, D. & McGee, D. The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone. Clim. Dynam. 42, 1967–1979 (2014).

    Google Scholar 

  51. Fedorov, A. V., Burls, N. J., Lawrence, K. T. & Peterson, L. C. Tightly linked zonal and meridional sea surface temperature gradients over the past five million years. Nat. Geosci. 8, 2577–2980 (2015).

    Google Scholar 

  52. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Google Scholar 

  53. Neelin, J., Munnich, M., Su, H., Meyerson, J. E. & Holloway, C. E. Tropical drying trends in global warming models and observations. Proc. Natl Acad. Sci. USA 103, 6110–6115 (2006).

    Google Scholar 

  54. Byrne, M. P. & Schneider, T. Narrowing of the ITCZ in a warming climate: physical mechanisms. Geophys. Res. Lett. 43, 11350–11357 (2016).

    Google Scholar 

  55. Lintner, B. R. & Neelin, J. A prototype for convective margin shifts. Geophys. Res. Lett. 34, L05812 (2007).

    Google Scholar 

  56. Singarayer, J. S., Valdes, P. J. & Roberts, W. H. G. Ocean dominated expansion and contraction of the late Quaternary tropical rainbelt. Sci. Rep. 7, 9382 (2017).

    Google Scholar 

  57. Wallace, J. et al. On the structure and evolution of ENSO-related climate variability in the tropical Pacific: lessons from TOGA. J. Geophys. Res. 103, 14241–14259 (1998).

    Google Scholar 

  58. Huang, P., Xie, S.-P., Hu, K., Huang, G. & Huang, R. Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci. 6, 357–361 (2013).

    Google Scholar 

  59. Chadwick, R., Good, P., Andrews, T. & Martin, G. Surface warming patterns drive tropical rainfall pattern responses to CO2 forcing on all timescales. Geophys. Res. Lett. 41, 610–615 (2014).

    Google Scholar 

  60. Hsu, Y.-H., Chou, C. & Wei, K.-Y. Land-ocean asymmetry of tropical precipitation changes in the mid-Holocene. J. Clim. 23, 4133–4151 (2010).

    Google Scholar 

  61. Liu, X., Battisti, D. S. & Donohoe, A. Tropical precipitation and cross-equatorial ocean heat transport during the mid-Holocene. J. Clim. 30, 3529–3547 (2017).

    Google Scholar 

  62. Back, L. E. & Bretherton, C. S. Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett. 33, 392 (2006).

    Google Scholar 

  63. Inoue, K. & Back, L. E. Gross moist stability analysis: assessment of satellite-based products in the GMS plane. J. Atmos. Sci. 74, 1819–1837 (2017).

    Google Scholar 

  64. Shaw, T. A. & Pauluis, O. Tropical and subtropical meridional latent heat transports by disturbances to the zonal mean and their role in the general circulation. J. Atmos. Sci. 69, 1872–1889 (2012).

    Google Scholar 

  65. Sobel, A. H. & Neelin, J. The boundary layer contribution to intertropical convergence zones in the quasi-equilibrium tropical circulation model framework. Theor. Comp. Fluid Dyn. 20, 323–350 (2006).

    Google Scholar 

  66. Kelly, P. & Mapes, B. Asian monsoon forcing of subtropical easterlies in the Community Atmosphere Model: summer climate implications for the western Atlantic. J. Clim. 26, 2741–2755 (2013).

    Google Scholar 

  67. Chou, C. & Neelin, J. D. Mechanisms limiting the northward extent of the northern summer monsoons over North America, Asia, and Africa*. J. Clim. 16, 406–425 (2003).

    Google Scholar 

  68. Adam, O., Bischoff, T. & Schneider, T. Seasonal and interannual variations of the energy flux equator and ITCZ. Part II: zonally varying shifts of the ITCZ. J. Clim. 29, 3219–3230 (2016).

    Google Scholar 

  69. Hagos, S. M. & Zhang, C. Diabatic heating, divergent circulation and moisture transport in the African monsoon system. Q. J. Royal Meteorol. Soc. 136, 411–425 (2009).

    Google Scholar 

  70. Hill, S. A., Ming, Y., Held, I. M. & Zhao, M. A moist static energy budget–based analysis of the Sahel rainfall response to uniform oceanic warming. J. Clim. 30, 5637–5660 (2017).

    Google Scholar 

  71. Taylor, C. M. et al. Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nat. Geosci. 4, 430–433 (2011).

    Google Scholar 

  72. Boos, W. R. & Kuang, Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463, 218–222 (2010).

    Google Scholar 

  73. Giannini, A. et al. A unifying view of climate change in the Sahel linking intra-seasonal, interannual and longer time scales. Environ. Res. Lett. 8, 024010 (2013).

    Google Scholar 

  74. Park, J.-Y., Bader, J. & Matei, D. Northern-hemispheric differential warming is the key to understanding the discrepancies in the projected Sahel rainfall. Nat. Commun. 6, 5985 (2015).

    Google Scholar 

  75. Liu, Y., Chiang, J. C. H., Chou, C. & Patricola, C. M. Atmospheric teleconnection mechanisms of extratropical North Atlantic SST influence on Sahel rainfall. Clim. Dynam. 43, 2797–2811 (2014).

    Google Scholar 

  76. Chiang, J. C. H. et al. Role of seasonal transitions and westerly jets in East Asian paleoclimate. Quat. Sci. Rev. 108, 111–129 (2015).

    Google Scholar 

  77. Rowell, D. P. The impact of Mediterranean SSTs on the Sahelian rainfall season. J. Clim. 16, 849–862 (2003).

    Google Scholar 

  78. Zhai, J. & Boos, W. R. The drying tendency of shallow meridional circulations in monsoons. Q. J. Royal Meteorol. Soc. 143, 2655–2664 (2017).

    Google Scholar 

  79. Bretherton, C. S., Peters, M. E. & Back, L. E. Relationships between water vapor path and precipitation over the tropical oceans. J. Clim. 17, 1517–1528 (2004).

    Google Scholar 

  80. Ahmed, F. & Schumacher, C. Convective and stratiform components of the precipitation-moisture relationship. Geophys. Res. Lett. 42, 10453–10462 (2015).

    Google Scholar 

  81. Bergemann, M. & Jakob, C. How important is tropospheric humidity for coastal rainfall in the tropics? Geophys. Res. Lett. 43, 5860–5868 (2016).

    Google Scholar 

  82. Zipser, E., Liu, C., Cecil, D., Nesbitt, S. & Yorty, D. Where are the most intense thunderstorms on Earth? Bull. Am. Met. Soc. 87, 1057–1071 (2006).

    Google Scholar 

  83. Liu, C. & Zipser, E. J. “Warm Rain” in the tropics: seasonal and regional distributions based on 9 yr of TRMM data. J. Cim 22, 767–779 (2009).

    Google Scholar 

  84. Davies, L., Jakob, C., May, P., Kumar, V. V. & Xie, S. Relationships between the large-scale atmosphere and the small-scale convective state for Darwin, Australia. J. Geophys. Res. 118, 11534–11545 (2013).

    Google Scholar 

  85. Dorrestijn, J., Crommelin, D. T., Siebesma, A. P., Jonker, H. J. J. & Jakob, C. Stochastic parameterization of convective area fractions with a multicloud model inferred from observational data. J. Atmos. Sci. 72, 854–869 (2015).

    Google Scholar 

  86. Song, H. et al. Evaluation of cloud fraction simulated by seven SCMs against the ARM observations at the SGP site*. J. Clim. 27, 6698–6719 (2014).

    Google Scholar 

  87. Martin, G. M. et al. Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J. Clim. 23, 5933–5957 (2010).

    Google Scholar 

  88. Willetts, P. D. et al. Moist convection and its upscale effects in simulations of the Indian monsoon with explicit and parametrized convection. Q. J. Royal Meteorol. Soc. 143, 1073–1085 (2017).

    Google Scholar 

  89. Marsham, J. H. et al. The role of moist convection in the West African monsoon system: insights from continental-scale convection-permitting simulations. Geophys. Res. Lett. 40, 1843–1849 (2013).

    Google Scholar 

  90. Daleu, C. L. et al. Intercomparison of methods of coupling between convection and large-scale circulation: 1. Comparison over uniform surface conditions. J. Adv. Model. Earth Syst. 7, 1576–1601 (2015).

    Google Scholar 

  91. Anber, U., Gentine, P., Wang, S. & Sobel, A. H. Fog and rain in the Amazon. Proc. Natl Acad. Sci. USA 112, 11473–11477 (2015).

    Google Scholar 

  92. Cronin, T. W., Emanuel, K. A. & Molnar, P. Island precipitation enhancement and the diurnal cycle in radiative-convective equilibrium. Q. J. Royal Meteorol. Soc. 141, 1017–1034 (2015).

    Google Scholar 

  93. Braconnot, P. et al. Impact of different convective cloud schemes on the simulation of the tropical seasonal cycle in a coupled ocean–atmosphere model. Clim. Dynam. 29, 501–520 (2007).

    Google Scholar 

  94. Coats, S. & Karnauskas, K. Are simulated and observed twentieth century tropical pacific sea surface temperature trends significant relative to internal variability? Geophys. Res. Lett. 44, 9928–9937 (2017).

    Google Scholar 

  95. Neelin, J. & Held, I. M. Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev. 115, 3–12 (1987).

    Google Scholar 

  96. Raymond, D., Sessions, S., Sobel, A. H. & Fuchs, Z. The mechanics of gross moist stability. J. Adv. Model. Earth Syst. 1, 9 (2009).

    Google Scholar 

  97. Kageyama, M. et al. PMIP4-CMIP6: the contribution of the Paleoclimate Modelling Intercomparison Project to CMIP6. Geosci. Model Dev. 11, 1033–1057 (2016).

    Google Scholar 

  98. Voigt, A. et al. The tropical rain belts with an annual cycle and a continent model intercomparison project: TRACMIP. J. Adv. Model. Earth Syst. 8, 1868–1891 (2016).

    Google Scholar 

  99. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Google Scholar 

  100. Zhou, T. et al. GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project. Geosci. Model Dev. 9, 3589–3604 (2016).

    Google Scholar 

  101. Huffman, G. et al. Integrated Multi-satellitE Retrievals for GPM (IMERG) Version 4.4. (NASA’s Precipitation Processing Center, accessed 21 December 2015); ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/

  102. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Royal Meteorol. Soc. 137, 553–597 (2011).

    Google Scholar 

  103. Huffman, G. J. et al. The TRMM Multi-satellite Precipitation Analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J. Hydrometeorol. 8, 38–55 (2007).

    Google Scholar 

  104. Biasutti, M., Yuter, S. E., Burleyson, C. D. & Sobel, A. H. Very high resolution rainfall patterns measured by TRMM precipitation radar: seasonal and diurnal cycles. Clim. Dynam. 39, 239–258 (2011).

    Google Scholar 

  105. Villarini, G. & Krajewski, W. F. Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv. Geophys. 31, 107–129 (2009).

    Google Scholar 

  106. Bartlein, P. J. et al. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Clim. Dynam. 37, 775–802 (2011).

    Google Scholar 

  107. Perez-Sanz, A., Li, G., González-Sampériz, P. & Harrison, S. P. Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and northern Africa in the CMIP5 simulations. Clim Past. 10, 551–568 (2014).

    Google Scholar 

  108. Otto-Bliesner, B. L. et al. Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation. Science 346, 1223–1227 (2014).

    Google Scholar 

  109. Xie, P. & Arkin, P. A. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc. 78, 2539–2558 (1997).

    Google Scholar 

  110. Kummerow, C. et al. The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Ocean. Technol. 15, 809–817 (1998).

    Google Scholar 

  111. Rienecker, M. M. et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 24, 3624–3648 (2011).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contributors to the workshop ‘Monsoons & ITCZ: the annual cycle in the Holocene and the future’, held at Columbia University in September 2015: the original idea for this Review Article was born of the insights and excitement engendered by their results and from the lively community discussion of ideas and approaches. The workshop was conceived under the aegis of the World Climate Research Program (WCRP) Grand Challenge on Cloud Circulation and Climate Sensitivity, and was made possible by the generous support of the Columbia Climate Center and the Columbia Initiative on Extreme Weather and Climate. NSF award AGS-1536461 supported the participation of early career scientists. We thank A. Funk for the analysis displayed in Fig. 4. We gratefully acknowledge the National Aeronautic and Space Administration (NASA) for TRMM3B42 and GPM rainfall data, TRMM2A23 and TRMM2A25 reflectivities, and MERRA reanalysis; the National Oceanic and Atmospheric Administration (NOAA) for the CMAP rainfall data; the European Centre for Medium Range Weather Forecasting (ECMWF) for the ERA Interim reanalysis; and the WCRP’s Working Group on Coupled Modelling and all participating modelling centres for CMIP5 and PMIP3 data. M.B., A.V. and J.S. are supported by NSF award AGS-1565522. M.B. is supported by DOE award DE-SC0014423. A.V. is supported by the German Ministry of Education and Research (BMBF) and FONA: Research for Sustainable Development (www.fona.de) under grant agreement 01LK1509A. S.P.H. acknowledges support from the ERC-funded project GC2.0 (Global Change 2.0: Unlocking the past for a clearer future, grant number 694481).

Author information

Authors and Affiliations

Authors

Contributions

M.B. led the writing process and produced Fig. 1 (from an idea by B.E.M.), Fig. 2 (from data provided by S.P.H. and P.B.), and Fig. 3 (in collaboration with W.R.B. and A.V.). C.S. produced Fig. 4. All authors collaboratively drafted the outline of the paper and greatly contributed to the writing process.

Corresponding author

Correspondence to Michela Biasutti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biasutti, M., Voigt, A., Boos, W.R. et al. Global energetics and local physics as drivers of past, present and future monsoons. Nature Geosci 11, 392–400 (2018). https://doi.org/10.1038/s41561-018-0137-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0137-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing