Article | Published:

A global analysis of terrestrial plant litter dynamics in non-perennial waterways

Nature Geosciencevolume 11pages497503 (2018) | Download Citation


Perennial rivers and streams make a disproportionate contribution to global carbon (C) cycling. However, the contribution of intermittent rivers and ephemeral streams (IRES), which sometimes cease to flow and can dry completely, is largely ignored although they represent over half the global river network. Substantial amounts of terrestrial plant litter (TPL) accumulate in dry riverbeds and, upon rewetting, this material can undergo rapid microbial processing. We present the results of a global research collaboration that collected and analysed TPL from 212 dry riverbeds across major environmental gradients and climate zones. We assessed litter decomposability by quantifying the litter carbon-to-nitrogen ratio and oxygen (O2) consumption in standardized assays and estimated the potential short-term CO2 emissions during rewetting events. Aridity, cover of riparian vegetation, channel width and dry-phase duration explained most variability in the quantity and decomposability of plant litter in IRES. Our estimates indicate that a single pulse of CO2 emission upon litter rewetting contributes up to 10% of the daily CO2 emission from perennial rivers and stream, particularly in temperate climates. This indicates that the contributions of IRES should be included in global C-cycling assessments.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Boyero, L. et al. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecol. Lett. 14, 289–294 (2011).

  2. 2.

    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).

  3. 3.

    Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

  4. 4.

    Hotchkiss, E. R. et al. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat. Geosci. 8, 696–699 (2015).

  5. 5.

    Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010).

  6. 6.

    Battin, T. J. et al. The boundless carbon cycle. Nature 2, 598–600 (2009).

  7. 7.

    Butman, D. et al. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting. Proc. Natl Acad. Sci. USA 113, 58–63 (2016).

  8. 8.

    Datry, T., Corti, R., Foulquier, A., von Schiller, D. & Tockner, T. One for all, all for one: a global river research network. Eos 97, 13–15 (2016).

  9. 9.

    Larned, S. T., Datry, T., Arscott, D. B. & Tockner, K. Emerging concepts in temporary‐river ecology. Freshw. Biol. 55, 717–738 (2010).

  10. 10.

    Stanley, E. H., Fisher, S. G. & Grimm, N. B. Ecosystem expansion and contraction in streams. BioScience 47, 427–435 (1997).

  11. 11.

    Datry, T., Larned, S. T. & Tockner, K. Intermittent rivers: a challenge for freshwater ecology. BioScience 64, 229–235 (2014).

  12. 12.

    Acuña, V. et al. Why should we care about temporary waterways? Science 343, 1080–1081 (2014).

  13. 13.

    Jaeger, K. L., Olden, J. D. & Pelland, N. A. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc. Natl Acad. Sci. USA 111, 13894–13899 (2014).

  14. 14.

    Foulquier, A., Artigas, J., Pesce, S. & Datry, T. Drying responses of microbial litter decomposition and associated fungal and bacterial communities are not affected by emersion frequency. Freshw. Sci. 34, 1233–1244 (2015).

  15. 15.

    Austin, A. T. & Vivanco, L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442, 555–558 (2006).

  16. 16.

    Corti, R. & Datry, T. Invertebrates and sestonic matter in an advancing wetted front travelling down a dry river bed (Albarine, France). Freshw. Sci. 31, 1187–1201 (2012).

  17. 17.

    Rosado, J., Morais, M. & Tockner, K. Mass dispersal of terrestrial organisms during first flush events in a temporary stream. River Res. Appl. 31, 912–917 (2015).

  18. 18.

    Michaletz, S. T., Cheng, D., Kerkhoff, A. J. & Enquist, B. J. Convergence of terrestrial plant production across global climate gradients. Nature 512, 39–43 (2014).

  19. 19.

    Ehrman, T. P. & Lamberti, G. A. Hydraulic and particulate matter retention in a 3rd-order Indiana stream. J. N. Am. Benthol. Soc. 11, 341–349 (1992).

  20. 20.

    Boyero, L. et al. Riparian plant litter quality increases with latitude. Sci. Rep. 7, 10562 (2017).

  21. 21.

    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).

  22. 22.

    Olson, J. S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44, 322–331 (1963).

  23. 23.

    Aerts, R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79, 439–449 (1997).

  24. 24.

    Cleveland, C. C., Neff, J. C., Townsend, A. R. & Hood, E. Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems 7, 175–285 (2004).

  25. 25.

    Hasler, C. T., Butman, D., Jeffrey, J. D. & Suski, C. D. Freshwater biota and rising pCO2? Ecol. Lett. 19, 98–108 (2016).

  26. 26.

    Gómez-Gener, L. et al. When water vanishes: magnitude and regulation of carbon dioxide emissions from dry temporary streams. Ecosystems 19, 710–723 (2016).

  27. 27.

    Bernhardt, E. S. et al. Control points in ecosystems: moving beyond the hot spot hot moment concept. Ecosystems 20, 665–682 (2017).

  28. 28.

    Benstead, J. P. & Leigh, D. S. An expanded role for river networks. Nat. Geosci. 5, 678–679 (2012).

  29. 29.

    Leigh, C. et al. Ecological research and management of intermittent rivers: an historical review and future directions. Freshw. Biol. 61, 1181–1199 (2016).

  30. 30.

    Stubbington, R., England, J., Wood, P. J. & Sefton, C. E. Temporary streams in temperate zones: recognizing, monitoring and restoring transitional aquatic‐terrestrial ecosystems. WIRES Water 4, e1223 (2017).

  31. 31.

    Datry, T., Bonada, N. & Boulton, A. J. (eds) in Intermittent Rivers and Ephemeral Streams: Ecology and Management 1–20 (Academic, Oxford, 2017).

  32. 32.

    Snelder, T. H. et al. Regionalization of patterns of flow intermittence from gauging station records. Hydrol. Earth Syst. Sci. 17, 2685–2699 (2013).

  33. 33.

    Tooth, S. Process, form and change in dryland rivers: a review of recent research. Earth Sci. Rev. 51, 67–107 (2000).

  34. 34.

    Levick, L. R. et al. The Ecological and Hydrological Significance of Ephemeral and Intermittent Streams in the Arid and Semi-arid American Southwest (US Environmental Protection Agency, Washington DC, 2008).

  35. 35.

    Huston, M. A. & Wolverton, S. The global distribution of net primary production: resolving the paradox. Ecol. Monogr. 79, 343–377 (2009).

  36. 36.

    Murphy, P. G. & Lugo, A. E. Ecology of tropical dry forest. Ann. Rev. Ecol. Syst. 17, 67–88 (1986).

  37. 37.

    De Deyn, G. B., Cornelissen, J. H. C. & Bardgett, R. D. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. Lett. 11, 516–531 (2008).

  38. 38.

    Leopold, L. B. Channel and Hillslope Processes in a Semiarid Area, New Mexico (Department of the Interior, Washington DC, 1966).

  39. 39.

    Gordon, N. D, McMahon, T. A., Finlayson, B. L., Gippel, C. J. & Nathan, R. J. Stream Hydrology. An Introduction for Ecologists 2nd edn (John Wiley & Sons, Hoboken, 2004).

  40. 40.

    World Atlas of Desertification 2nd edn (UNEP, 1997).

  41. 41.

    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).

  42. 42.

    Estiarte, M. & Peñuelas, J. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Glob. Change Biol. 21, 1005–1017 (2015).

  43. 43.

    Benton, T. G., Solan, M., Travis, J. M. & Sait, S. M. Microcosm experiments can inform global ecological problems. Trends Ecol. Evol. 22, 516–521 (2007).

  44. 44.

    Mora-Gómez, J. et al. Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream. Sci. Total Environ. 621, 486–496 (2018).

  45. 45.

    Dorca-Fornell, C. et al. Increased leaf mesophyll porosity following transient retinoblastoma-related protein silencing is revealed by microcomputed tomography imaging and leads to a system-level physiological response to the altered cell division pattern. Plant J. 76, 914–929 (2013).

  46. 46.

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

  47. 47.

    Dilly, O. Microbial respiratory quotient during basal metabolism and after glucose amendment in soils and litter. Soil Biol. Biochem. 33, 117–127 (2001).

  48. 48.

    Pitcher, R. C. et al. Exploring the role of environmental variables in shaping patterns of seabed biodiversity composition in regional-scale ecosystems. J. Appl. Ecol. 49, 670–679 (2012).

  49. 49.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

  50. 50.

    Leigh, C. & Datry, T. Drying as a primary hydrological determinant of biodiversity in river systems: a broad-scale analysis. Ecography 40, 487–499 (2017).

  51. 51.

    R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  52. 52.

    Liaw, A. & Wiener, M. Classification and regression by Random Forest. R News 2, 18–22 (2002).

Download references


This study was made possible thanks to a large collective effort of a global research network entitled the “1000 Intermittent River Project” (1000IRP) that merges individual knowledge, forces and passion through simple, consistent and comparable joint field experiments worldwide.

Author information


  1. IRSTEA, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France

    • T. Datry
    • , R. Corti
    • , C. Mendoza-Lera
    •  & S. Cauvy-Fraunié
  2. UMR ‘BOREA’ CNRS 7208/IRD 207/MNHN/UPMC, DMPA, Museum National d’Histoire Naturelle, Paris, France

    • T. Datry
  3. Universite Grenoble Alpes, Laboratoire d’Écologie Alpine (LECA), UMR CNRS-UGA-USMB, Grenoble, France

    • A. Foulquier
  4. Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain

    • D. von Schiller
    •  & A. Elosegi
  5. Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany

    • K. Tockner
    • , M. O. Gessner
    • , M. I. Arce
    • , S. D. Langhans
    • , O. Shumilova
    •  & D. Zak
  6. Institute of Biology, Freie Universität Berlin, Berlin, Germany

    • K. Tockner
  7. Université Savoie Mont Blanc, INRA, CARRTEL, Thonon-Les Bains, France

    • J. C. Clément
  8. Department of Ecology, Berlin Institute of Technology (TU Berlin), Berlin, Germany

    • M. O. Gessner
  9. Department of Zoology, University of Granada, Granada, Spain

    • M. Moleón
  10. School of Science and Technology, Nottingham Trent University, Nottingham, UK

    • R. Stubbington
  11. Department of Geosciences, Federal University of São João del-Rei, São João del-Rei, Brazil

    • B. Gücker
  12. Laboratorio de Fotobiología, INIBIOMA (U.N.COMAHUE - CONICET), Bariloche, Argentina

    • R. Albariño
    •  & V. D. Diaz-Villanueva
  13. Department of Biology, University of Oklahoma, Norman, OK, USA

    • D. C. Allen
  14. Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland

    • F. Altermatt
  15. Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel

    • S. Arnon
  16. Université de Lorraine - UR AFPA, Vandoeuvre-Les-Nancy, France

    • D. Banas
  17. Faculty of Environmental Science, Center of Environmental Science EULA-Chile and CHRIAM Center, Universidad de Concepción, Concepción, Chile

    • A. Banegas-Medina
  18. Department of Geography, University of California, Berkeley, CA, USA

    • E. Beller
  19. Edith Cowan University, School of Science, Mine Water and Environment Research Centre (MiWER), Joondalup, Victoria, Australia

    • M. L. Blanchette
  20. Group of Lotic Ecology (ELICE-RESTORES), Instituto de Biología, Universidad de Antioquia, Medellín, Colombia

    • J. F. Blanco-Libreros
  21. Department of Environment and Science, Queensland Government, Brisbane, Queensland, Australia

    • J. J. Blessing
    • , J. C. Marshall
    • , P. M. Negus
    •  & A. L. Steward
  22. Department of Geosciences, Federal University of São João del-Rei, São João del-Rei, Brazil

    • I. G. Boëchat
  23. Department of Biology, University of San Diego, San Diego, CA, USA

    • K. S. Boersma
  24. School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA

    • M. T. Bogan
  25. Grup de Recerca Freshwater Ecology and Management (FEM), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain

    • N. Bonada
    •  & N. Cid
  26. Murray-Darling Freshwater Research Centre, La Trobe University, Wodonga, Australia, Victoria

    • N. R. Bond
  27. Faculty of Environmental Science, Center of Environmental Science EULA-Chile and CHRIAM Center, Universidad de Concepción, Concepción, Chile

    • K. C. Brintrup Barría
  28. Institute of Earth Sciences, University of Applied Sciences and Arts of Southern Switzerland, Canobbio, Switzerland

    • A. Bruder
  29. Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia

    • R. M. Burrows
    •  & C. Leigh
  30. Department of Environmental Biology, University of Navarra, School of Sciences, Pamplona, Spain

    • T. Cancellario
  31. Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal

    • C. Canhoto
  32. Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA

    • S. M. Carlson
    • , J. L. Hwan
    • , P. Rodríguez-Lozano
    •  & C. Woelfle-Erskine
  33. LIEC, UMR CNRS 7360, Université de Lorraine, Metz, France

    • M. Danger
  34. Centro de Ciências Agrárias e Biológicas, Universidade Estadual Vale do Acaraú, Sobral, Brazil

    • Bianca de Freitas Terra
  35. Water Research Institute - National Research Council, Bari, Italy

    • A. M De Girolamo
    •  & A. Zoppini
  36. Unidad de Limnología y Recursos Acuáticos (ULRA), Universidad Mayor de San Simón, Cochabamba, Bolivia

    • Evans de La Barra
  37. Department of Ecology and Hydrology, Regional Campus of International Excellence ‘Campus Mare Nostrum’ - University of Murcia, Murcia, Spain

    • R. del Campo
    • , R. Gómez
    • , S. Guareschi
    •  & M. M. Sánchez-Montoya
  38. Institute for Applied Ecology, University of Canberra, Bruce, Territory, Australian Capital, Australia

    • F. Dyer
    •  & R. J. Rolls
  39. Centre International de Recherche en Agronomie pour le Développement, CIRAD, UPR HORTSYS, Montpellier, France

    • E. Faye
  40. School of Biological Sciences, University of Canterbury, Christchurch, New Zealand

    • C. Febria
    •  & A. R. McIntosh
  41. INRA, UAR 1275 DEPT EFPA, Centre de recherche de Nancy, Champenoux, France

    • B. Four
  42. School of Marine Sciences, Ruppin Academic Center, Michmoret, Israel

    • S. Gafny
  43. Department of Biosciences, Mangalore University, Mangalore, India

    • S. D. Ghate
    •  & K. R. Sridhar
  44. Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden

    • L. Gómez-Gener
  45. MARE – Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Coimbra, Portugal

    • M. A. S. Graça
  46. Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany

    • F. Hoppeler
    •  & S. U. Pauls
  47. School of Biological and Chemical Sciences, Queen Mary University of London, London, UK

    • J. I. Jones
  48. Ezemvelo KZN Wildlife, Pietermaritzburg, South Africa

    • S. Kubheka
  49. Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy

    • A. Laini
  50. Department of Aquatic Ecology, Eawag the Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland

    • C. J. Little
    • , E. Martín
    •  & C. T. Robinson
  51. Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius-Kuehn-Institute, Berlin, Germany

    • S. Lorenz
  52. Department of LimnologyUniversity of Münster, Institute for Evolution and Biodiversity, Münster, Germany

    • E. I. Meyer
  53. Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia

    • M. Miliša
  54. Department of Freshwater Invertebrates, Albany Museum, Grahamstown, South Africa

    • M. C. Mlambo
  55. Department of Biology, Universidade de Evora, Evora, Portugal

    • M. Morais
  56. Universidad Mayor, Real y Pontificia de San Francisco Xavier de Chuquisaca, Sucre, Bolivia

    • N. Moya
  57. Missouri University of Science and Technology, Rolla, MO, USA

    • D. K. Niyogi
  58. Terra Cypria - The Cyprus Conservation Foundation, Limassol, Cyprus

    • A. Papatheodoulou
  59. Departamento de Ecología y Biología Animal, Universidad de Vigo, Vigo, Spain

    • I. Pardo
  60. Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic

    • P. Pařil
    •  & M. Polášek
  61. Department of Biology, University of Montenegro, Podgorica, Montenegro

    • V. Pešić
  62. Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Nis, Serbia

    • A. Savić
  63. National Institute of Water and Atmospheric Research, Hamilton, New Zealand

    • R. Storey
  64. Laboratoire d’Écologie et Gestion des Ecosystèmes Naturels (LECGEN), University of Tlemcen, Tlemcen, Algeria

    • A. Taleb
  65. Israel Nature & Parks Authority, Jerusalem, Israel

    • A. Uzan
  66. Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

    • Ross Vander Vorste
  67. Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER) Freshwater Ecology Research Group College of Science and Engineering, James Cook University, Townsville, Queensland, Australia

    • N. J. Waltham
  68. Center for Applied Geosciences, Eberhard Karls Universität Tübingen, Tübingen, Germany

    • D. Zak
  69. Department of Bioscience, Aarhus University, Silkeborg, Denmark

    • C. Zarfl


  1. Search for T. Datry in:

  2. Search for A. Foulquier in:

  3. Search for R. Corti in:

  4. Search for D. von Schiller in:

  5. Search for K. Tockner in:

  6. Search for C. Mendoza-Lera in:

  7. Search for J. C. Clément in:

  8. Search for M. O. Gessner in:

  9. Search for M. Moleón in:

  10. Search for R. Stubbington in:

  11. Search for B. Gücker in:

  12. Search for R. Albariño in:

  13. Search for D. C. Allen in:

  14. Search for F. Altermatt in:

  15. Search for M. I. Arce in:

  16. Search for S. Arnon in:

  17. Search for D. Banas in:

  18. Search for A. Banegas-Medina in:

  19. Search for E. Beller in:

  20. Search for M. L. Blanchette in:

  21. Search for J. F. Blanco-Libreros in:

  22. Search for J. J. Blessing in:

  23. Search for I. G. Boëchat in:

  24. Search for K. S. Boersma in:

  25. Search for M. T. Bogan in:

  26. Search for N. Bonada in:

  27. Search for N. R. Bond in:

  28. Search for K. C. Brintrup Barría in:

  29. Search for A. Bruder in:

  30. Search for R. M. Burrows in:

  31. Search for T. Cancellario in:

  32. Search for C. Canhoto in:

  33. Search for S. M. Carlson in:

  34. Search for S. Cauvy-Fraunié in:

  35. Search for N. Cid in:

  36. Search for M. Danger in:

  37. Search for Bianca de Freitas Terra in:

  38. Search for A. M De Girolamo in:

  39. Search for Evans de La Barra in:

  40. Search for R. del Campo in:

  41. Search for V. D. Diaz-Villanueva in:

  42. Search for F. Dyer in:

  43. Search for A. Elosegi in:

  44. Search for E. Faye in:

  45. Search for C. Febria in:

  46. Search for B. Four in:

  47. Search for S. Gafny in:

  48. Search for S. D. Ghate in:

  49. Search for R. Gómez in:

  50. Search for L. Gómez-Gener in:

  51. Search for M. A. S. Graça in:

  52. Search for S. Guareschi in:

  53. Search for F. Hoppeler in:

  54. Search for J. L. Hwan in:

  55. Search for J. I. Jones in:

  56. Search for S. Kubheka in:

  57. Search for A. Laini in:

  58. Search for S. D. Langhans in:

  59. Search for C. Leigh in:

  60. Search for C. J. Little in:

  61. Search for S. Lorenz in:

  62. Search for J. C. Marshall in:

  63. Search for E. Martín in:

  64. Search for A. R. McIntosh in:

  65. Search for E. I. Meyer in:

  66. Search for M. Miliša in:

  67. Search for M. C. Mlambo in:

  68. Search for M. Morais in:

  69. Search for N. Moya in:

  70. Search for P. M. Negus in:

  71. Search for D. K. Niyogi in:

  72. Search for A. Papatheodoulou in:

  73. Search for I. Pardo in:

  74. Search for P. Pařil in:

  75. Search for S. U. Pauls in:

  76. Search for V. Pešić in:

  77. Search for M. Polášek in:

  78. Search for C. T. Robinson in:

  79. Search for P. Rodríguez-Lozano in:

  80. Search for R. J. Rolls in:

  81. Search for M. M. Sánchez-Montoya in:

  82. Search for A. Savić in:

  83. Search for O. Shumilova in:

  84. Search for K. R. Sridhar in:

  85. Search for A. L. Steward in:

  86. Search for R. Storey in:

  87. Search for A. Taleb in:

  88. Search for A. Uzan in:

  89. Search for Ross Vander Vorste in:

  90. Search for N. J. Waltham in:

  91. Search for C. Woelfle-Erskine in:

  92. Search for D. Zak in:

  93. Search for C. Zarfl in:

  94. Search for A. Zoppini in:


T.D., A.F., R.C., D.vS. and K.T. assumed responsibility for the overall project planning and coordination. All authors collected plant litter in their countries and processed and analysed this material. The centralized lab analyses were conducted by T.D., A.F., R.C., C.M.-L. and J.C.C. The data compilation and database management was carried out by R.C. and C.M.-L. The data analyses were performed by T.D., A.F., R.C. and C.M.-L. T.D. led the writing of the manuscript with A.F. and notable contributions by M.O.G., B.G., M.Moleón and R.Stubbington. All the other authors commented on and contributed to revising draft versions.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to T. Datry.

Supplementary information

  1. Supplementary Information

    Supplementary Material 1–10

About this article

Publication history