Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cambrian Sauk transgression in the Grand Canyon region redefined by detrital zircons

Abstract

The Sauk transgression was one of the most dramatic global marine transgressions in Earth history. It is recorded by deposition of predominantly Cambrian non-marine to shallow marine sheet sandstones unconformably above basement rocks far into the interiors of many continents. Here we use dating of detrital zircons sampled from above and below the Great Unconformity in the Grand Canyon region to bracket the timing of the Sauk transgression at this classic location. We find that the Sixtymile Formation, long considered a Precambrian unit beneath the Great Unconformity, has maximum depositional ages that get younger up-section from 527 to 509 million years old. The unit contains angular unconformities and soft-sediment deformation that record a previously unknown period of intracratonic faulting and epeirogeny spanning four Cambrian stages. The overlying Tapeats Sandstone has youngest detrital zircon ages of 505 to 501 million years old. When linked to calibrated trilobite zone ages of greater than 500 million years old, these age constraints show that the marine transgression across a greater than 300-km-wide cratonic region took place during an interval 505 to 500 million years ago—more recently and more rapidly than previously thought. We redefine this onlap as the main Sauk transgression in the region. Mechanisms for this rapid flooding of the continent include thermal subsidence following the final breakup of Rodinia, combined with abrupt global eustatic changes driven by climate and/or mantle buoyancy modifications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Detrital zircon ages from the Sixtymile Formation and Tapeats Sandstone.
Fig. 2: Detrital zircon probability density plots and youngest grain ages from about 10,000 dated zircons from Cambrian successions of southwestern USA.

Similar content being viewed by others

References

  1. Hoffman, P. F. & Schrag, D. P. The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14, 129–155 (2002).

    Article  Google Scholar 

  2. Canfield, D. E., Poulton, S. W. & Narbonne, G. M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315, 92–95 (2007).

    Article  Google Scholar 

  3. Smith, M. P. & Harper, D. A. T. Causes of the Cambrian explosion. Science 341, 1355–1356 (2013).

    Article  Google Scholar 

  4. Macdonald, F. A. et al. Calibrating the Cryogenian. Science 327, 1241–1243 (2010).

    Article  Google Scholar 

  5. Rooney, A. D., Strauss, J. V., Brandon, A. D. & Macdonald, F. A. A Cryogenian chronology: two long-lasting, synchronous Neoproterozoic glaciations. Geology 43, 459–462 (2015).

    Article  Google Scholar 

  6. Dalziel, I. W. D. Cambrian transgression and radiation linked to an Iapetus-Pacific oceanic connection? Geology 42, 979–982 (2014).

    Article  Google Scholar 

  7. Merdith, A. S. et al. A full-plate global reconstruction of the Neoproterozoic. Gondwana Res. 50, 84–134 (2017).

    Article  Google Scholar 

  8. Karlstrom, K. E. et al. Chuar Group of the Grand Canyon: record of breakup of Rodinia, associated change in the global carbon cycle, and ecosystem expansion by 740 Ma. Geology 28, 619–622 (2000).

    Article  Google Scholar 

  9. MacDonald, F. A. et al. The Laurentian record of Neoproterozoic glaciation, tectonism, and eukaryotic evolution in Death Valley, California. Geol. Soc. Am. Bull. 125, 1203–1223 (2013).

    Article  Google Scholar 

  10. Bond, G. C., Christie-Blick, N., Kominz, M. A. & Devlin, W. J. An Early Cambrian rift to post-rift transition in the Cordillera of western North America. Nature 315, 742–746 (1985).

    Article  Google Scholar 

  11. Levy, M. & Christie-Blick, N. Tectonic subsidence of the early Paleozoic passive continental margin in eastern California and southern Nevada. Geol. Soc. Am. Bull. 103, 1590–1606 (1991).

    Article  Google Scholar 

  12. Peters, S. E. & Gaines, R. R. Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion. Nature 484, 363–366 (2012).

    Article  Google Scholar 

  13. Sloss, L. Sequences in the cratonic interior of North America. Geol. Soc. Am. Bull. 74, 93–114 (1963).

    Article  Google Scholar 

  14. Keller, M., Lehnert, O. & Cooper, J. D. Sauk megasequence supersequences, southern Great Basin: second-order accommodation events in the southwest Cordilleran margin platform. AAPG Mem. 98, 873–896 (2012).

    Google Scholar 

  15. Babcock, L. E. et al. Global climate, sea level cycles, and biotic events in the Cambrian Period. Palaeoworld 24, 5–15 (2015).

    Article  Google Scholar 

  16. International Chronostratigraphic Chart v.2017/02 (International Commission on Stratigraphy, 2017); http://www.stratigraphy.org/ICSchart/ChronostratChart2017-02.pdf

  17. Powell, J. W. Exploration of the Colorado River of the West and Its Tributaries (Smithsonian Institution, 1875).

  18. Dehler, C. et al. Synthesis of the 780–740 Ma Chuar, Uinta Mountain, and Pahrump (ChUMP) groups, western USA: implications for Laurentia-wide cratonic marine basins. Geol. Soc. Am. Bull. 129, 607–624 (2017).

    Article  Google Scholar 

  19. Elston, D. P. & McKee, E. H. Age and correlation of the late Proterozoic Grand Canyon disturbance, northern Arizona. Geol. Soc. Am. Bull. 93, 681–699 (1982).

    Article  Google Scholar 

  20. Timmons, J. M. et al. Proterozoic multistage (ca. 1.1 and 0.8 Ga) extension recorded in the Grand Canyon Supergroup and establishment of northwest-and north-trending tectonic grains in the southwestern United States. Geol. Soc. Am. Bull. 113, 163–181 (2001).

    Article  Google Scholar 

  21. McKee, E. D. & Resser, C. E. Cambrian History of the Grand Canyon Region Pub. 563 (Carnegie Institution of Washington, The Lord Baltimore Press, Baltimore, 1945).

  22. Spencer, C. J., Prave, A. R., Cawood, P. A. & Roberts, N. M. W. Detrital zircon geochronology of the Grenville/Llano foreland and basal Sauk sequence in west Texas, USA. Geol. Soc. Am. Bull. 126, 1117–1128 (2014).

    Article  Google Scholar 

  23. Palmer, A. R. Subdivision of the Sauk Sequence Open-file Report No. 81-743 160–162 (US Geological Survey,1981).

  24. Ford, T. D. & Breed, W. J. Late Precambrian Chuar Group, Grand Canyon, Arizona. Geol. Soc. Am. Bull. 84, 1243–1260 (1973).

    Article  Google Scholar 

  25. Elston, D. P. Late Precambrian Sixtymile Formation and Orogeny at Top of the Grand Canyon Supergroup, Northern Arizona Professional Paper 1092 (US Geological Survey, 1979).

  26. Rooney, A.D. Coupled Re-Os and U-Pb geochronology of the Tonian Chuar Group, Grand Canyon. Geol. Soc. Am. Bull. https://doi.org/10.1130/B31768.1 (2017).

  27. Hagadorn, J. W., Kirschvink, J. L., Raub, T. D. & Rose, E. C. in Cambrian Stratigraphy and Paleontology of Northern Arizona and Southern Nevada (eds Hollingsworth, J. S. et al.) 63–77 (MNA Bulletin 67, Museum of Northern Arizona, 2011).

  28. Webster, M. in Cambrian Stratigraphy and Paleontology of Northern Arizona and Southern Nevada (eds Hollingsworth, J. S. et al.) 122–154 (MNA Bulletin 67, Museum of Northern Arizona, 2011).

  29. Amato, J. M. & Mack, G. H. Detrital zircon geochronology from the Cambrian-Ordovician Bliss Sandstone, New Mexico: evidence for contrasting Grenville-age and Cambrian sources on opposite sides of the Transcontinental Arch. Geol. Soc. Am. Bull. 124, 1826–1840 (2012).

    Article  Google Scholar 

  30. Hanson, R. E. et al. Intraplate magmatism related to opening of the southern Iapetus Ocean: Cambrian Wichita igneous province in the Southern Oklahoma rift zone. Lithos 174, 57–70 (2013).

    Article  Google Scholar 

  31. Fedo, C. M. & Cooper, J. D. Sedimentology and sequence stratigraphy of Neoproterozoic and Cambrian units across a craton-margin hinge zone, southeastern California, and implications for the early evolution of the Cordilleran margin. Sed. Geol. 141–142, 501–522 (2001).

    Article  Google Scholar 

  32. Stewart, J. H. et al. Detrital zircon provenance of Mesoproterozoic to Cambrian arenites in the western United States and northwestern Mexico. Geol. Soc. Am. Bull. 113, 1343–1356 (2001).

    Article  Google Scholar 

  33. Rose, E. Nonmarine aspects of the Cambrian Tonto Group of the Grand Canyon, USA, and broader implications. Palaeoworld 15, 223–241 (2012).

    Article  Google Scholar 

  34. Gehrels, G. E. et al. Detrital zircon U-Pb geochronology of Paleozoic strata in the Grand Canyon. Lithosphere 3, 183–200 (2011).

    Article  Google Scholar 

  35. Matthews, W., Guest, B. & Madronich, L. Latest Neoproterozoic to Cambrian detrital zircon facies of western Laurentia. Geosphere 14, 243–264 (2017).

    Article  Google Scholar 

  36. Giallorenzo et al. Timing of exhumation, Wheeler Pass thrust sheet, southern Nevada and California: Late Jurassic to middle Cretaceous evolution of the southern Sevier fold-and-thrust belt. Geol. Soc. Am. Bull. 130, 558–579 (2017).

    Article  Google Scholar 

  37. Sundberg, F. A. in Cambrian Stratigraphy and Paleontology of Northern Arizona and Southern Nevada (eds Hollingsworth, J. S. et al.) 186–190 (MNA Bulletin 67, Museum of Northern Arizona, 2011).

  38. Foster, J. Trilobites and other fauna from two quarries in the Bright Angel Shale (middle Cambrian, Series 3, Delamaran), Grand Canyon National Park, Arizona. Mus. North. Ariz. Bull. 67, 99–120 (2011).

    Google Scholar 

  39. Schmitz, M. D. in The Geologic Time Scale 2012 (eds Gradstein, F. M. et al.) 1045–1082 (Elsevier, Boston, 2012).

  40. Sundberg, F. A. et al. International correlation of the Cambrian Series 2–3, Stages 4–5 boundary interval. Australas. Palaeontol. Mem. 49, 83–124 (2016).

    Google Scholar 

  41. Peng, S., Babcock, L. E. & Cooper, R. A. in The Geologic Time Scale 2012 (eds Gradstein, F.M. et al.) 437–488 (Elsevier, Boston, 2012).

  42. Encarnacion, J., Rowell, A. J. & Grunow, A. M. A U-Pb age for the Cambrian Taylor Formation, Antarctica: implications for the Cambrian time scale. J. Geol. 107, 497–504 (1999).

    Article  Google Scholar 

  43. Colpron, M., Logan, J. M. & Mortensen, J. K. U-Pb zircon age constraint for late Neoproterozoic rifting and initiation of the lower Paleozoic passive margin of western Laurentia. Can. J. Earth Sci. 39, 133–143 (2002).

    Article  Google Scholar 

  44. Yonkee, W. A. et al. Tectono-stratigraphic framework of Neoproterozoic to Cambrian strata, west-central US: protracted rifting, glaciation, and evolution of the North American Cordilleran margin. Earth Sci. Rev. 136, 59–95 (2014).

    Article  Google Scholar 

  45. Dickinson, W. R. Evolution of the North America Cordillera. Annu. Rev. Earth Planet. Sci. 32, 13–45 (2004).

    Article  Google Scholar 

  46. Hogan, E. G., Fedo, C. M. & Cooper, J. D. Reassessment of the basal Sauk supersequence boundary across the Laurentian craton-margin hinge zone, southeastern California. J. Geol. 119, 661–685 (2011).

    Article  Google Scholar 

  47. Landing, E., Amati, L. & Franzi, D. A. Epeirogenic transgression near a triple junction: the oldest (latest early-middle Cambrian) marine onlap of cratonic New York and Quebec. Geol. Mag. 146, 552–566 (2009).

    Article  Google Scholar 

  48. Powell, J. H., Abed, A. M. & Le Nindre, Y.-M. Cambrian stratigraphy of Jordan. GeoArabia 19, 81–134 (2014).

    Google Scholar 

  49. Maidment, D. W., Williams, I. S. & Hand, M. Testing long-term patterns of basin sedimentation by detrital zircon geochronology, Centralian Superbasin, Australia. Basin Res. 19, 335–360 (2007).

    Article  Google Scholar 

  50. Meyers, S. R. & Peters, S. E. A 56 million year rhythm in North American sedimentation during the Phanerozoic. Earth Planet. Sci. Lett. 303, 174–180 (2011).

    Article  Google Scholar 

  51. Kirschvink, J. L., Ripperdan, R. L. & Evans, D. A. Evidence for a large-scale reorganization of Early Cambrian continental masses by inertial interchange true polar wander. Science 277, 541–545 (1997).

    Article  Google Scholar 

  52. Driscoll, P. Simulating 2 Ga of geodynamo history. Geophys. Res. Lett. 43, 5680–5687 (2016).

    Article  Google Scholar 

  53. Gehrels, G. E. & Pecha, M. Detrital zircon U-Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin strata of western North America. Geosphere 10, 49–65 (2014).

    Article  Google Scholar 

  54. Daniels, B. G., Auchter, N. C., Hubbard, S. M., Romans, B. W., Matthews, W. A. & Stright, L. Timing of deep-water slope evolution constrained by large-n detrital and volcanic ash zircon geochronology, Cretaceous Magallanes Basin, Chile. Geol. Soc. Am. Bull. 130, 438–454 (2018).

    Article  Google Scholar 

  55. Paces, J. B. & Miller, J. D. Precise U-Pb ages of Duluth Complex and related mafic intrusion, Northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System. J. Geophys. Res. 98, 13997–14013 (2003).

    Article  Google Scholar 

  56. Wiedenbeck et al. Further characterisation of the 91500 zircon crystal. Geostand. Geoanal. Res. 28, 9–39 (2004).

    Article  Google Scholar 

  57. Mortensen, J. K. & Card, K. D. U-Pb age constraints for the magmatic and tectonic evolution of the Pontiac Subprovince, Quebec. Can. J. Earth Sci. 30, 1970–1980 (1993).

    Article  Google Scholar 

  58. Black, L. P. et al. Improved 206Pb/238U microprobe geochronology by the monitoring of trace-element-related matrix effects; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 205, 155–170 (2004).

    Article  Google Scholar 

  59. Müller, W., Shelley, M., Miller, P. & Broude, S. Initial performance metrics of a new custom-designed ArF Excimer LA-ICPMS system coupled to a two-volume laser-ablation cell. J. Anal. At. Spectrom. 24, 209–214 (2009).

    Article  Google Scholar 

  60. Horstwood, M. S. A. et al. Community-derived standards for LA-ICP-MS U-Th-Pb geochronology – uncertainty propagation, age interpretation and data reporting. Geostand. Geoanal. Res. 40, 311–332 (2016).

    Article  Google Scholar 

  61. Spencer, C. J., Kirkland, C. L. & Taylor, R. J. M. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geosci. Front. 7, 581–589 (2016).

    Article  Google Scholar 

  62. Ludwig, K. R. Isoplot 3.00: a Geochronological Toolkit for Microsoft Excel Special Publication 4 (Berkeley Geochronological Center, 2003).

  63. Matthews, W. A. & Guest, B. A practical approach for collecting large-n detrital zircon U-Pb data sets by quadrupole LA-ICP-MS. Geostand. Geoanal. Res. 41, 161–180 (2017).

    Article  Google Scholar 

  64. Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. Metrology and traceability of U-Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochim. Cosmochim. Acta 164, 464–480 (2015).

    Article  Google Scholar 

  65. Rivera, T. A., Storey, M., Schmitz, M. D. & Crowley, J. L. Age intercalibration of 40Ar/39Ar sanidine and chemically distinct U/Pb zircon populations from the Alder Creek Rhyolite Quaternary geochronology standard. Chem. Geol. 345, 87–98 (2013).

    Article  Google Scholar 

  66. Siddoway, C. S. & Gehrels, G. E. Basement-hosted sandstone injectites of Colorado: a vestige of the Neoproterozoic revealed through detrital zircon provenance analysis. Lithosphere 6, 403–408 (2014).

    Article  Google Scholar 

  67. Memeti, V. et al. Evaluating the Mojave–Snow Lake fault hypothesis and origins of central Sierran metasedimentary pendant strata using detrital zircon provenance analyses. Lithosphere 2, 341–360 (2010).

    Article  Google Scholar 

  68. Howard, A. L., Farmer, G. L., Amato, J. M. & Fedo, C. M. Zircon U-Pb ages and Hf isotopic compositions indicate multiple sources for Grenvillian detrital zircon deposited in western Laurentia. Earth Planet. Sci. Lett. 432, 300–310 (2015).

    Article  Google Scholar 

  69. Chapman, A. D., Ernst, W. G., Gottlieb, E., Powerman, V. & Metzger, E. P. Detrital zircon geochronology of Neoproterozoic-Lower Cambrian passive-margin strata of the White-Inyo Range, east-central California: implications for the Mojave-Snow Lake fault hypothesis. Geol. Soc. Am. Bull. 127, 926–944 (2015).

    Article  Google Scholar 

  70. Linde, G. M., Cashman, P. H., Trexler, J. H. & Dickinson, W. R. Stratigraphic trends in detrital zircon geochronology of upper Neoproterozoic and Cambrian strata, Osgood Mountains, Nevada, and elsewhere in the Cordilleran miogeocline: evidence for early Cambrian uplift of the Transcontinental Arch. Geosphere 10, 1402–1410 (2014).

    Article  Google Scholar 

  71. Link, P. K., Todt, M. K., Pearson, D. M. & Thomas, R. C. 500-490 Ma detrital zircons in Upper Cambrian Worm Creek and correlative sandstones, Idaho, Montana, and Wyoming: magmatism and tectonism within the passive margin. Lithosphere 9, 910–926 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

Analytical support was in part from National Science Foundation (NSF) Division of Earth Sciences (EAR) grants EAR-1119629, 1145247 and 1348007 from the Tectonics Program (to K.K. and L.C.). Support for J.M. was from Australian Research Council grant FL160100168. NSF grant EAR-1338583 provided support for the Arizona LaserChron Center. Analyses conducted at the University of Calgary were obtained at the Centre for Pure and Applied Tectonics and Thermochronology, a new LA-ICP-MS laboratory funded by the Canadian Foundation for Innovation (CFI project 30696). Funding for the analytical infrastructure of the Boise State Isotope Geology Laboratory was provided by the NSF Major Research Instrumentation grants EAR-0521221 and EAR-1337887, and NSF EAR Instrumentation and Facilities Program grant EAR-0824974. We thank J. Foster, E. Rose, F. Sundberg and M. Webster for insights on fossils and facies of the Tonto Group, K. Honda for references, and patrons of the Denver Museum of Natural History for support of J.H.’s fieldwork. We thank C. Dehler for an informal review that helped improve the paper. We thank B. Guest for helping to forge the UNM-UC collaboration. Samples were collected under Research and Collecting agreements with Grand Canyon National Park.

Author contributions

K.K., J.M. and L.C. synthesized the data. J.H. contributed the palaeontology. J.H., J.M. and L.C. contributed the stratigraphy and sedimentology. G.G., J. M., M.P. and D.G. conducted the ICPMS analysis of Sixtymile Formation samples A–E. M.S. conducted CA-ID-TIMS analysis of Sixtymile Formation samples A–D. W.M. conducted the ICPMS analysis of Tapeats Sandstone samples G and H. L.M. conducted the ICPMS analysis of Grand Canyon Tapeats Standstone sample F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Karlstrom.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures and Supplementary Table 2 (CA-IDTIMS U-Pb isotopic data for Sixtymile Formation detrital zircons)

Supplementary Dataset 1

Supplementary Table 1 (detrital zircon data and max depositional age calculations by sample)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karlstrom, K., Hagadorn, J., Gehrels, G. et al. Cambrian Sauk transgression in the Grand Canyon region redefined by detrital zircons. Nature Geosci 11, 438–443 (2018). https://doi.org/10.1038/s41561-018-0131-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0131-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing