Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anomalous mantle transition zone beneath the Yellowstone hotspot track

Abstract

The origin of the Yellowstone and Snake River Plain volcanism has been strongly debated. The mantle plume model successfully explains the age-progressive volcanic track, but a deep plume structure has been absent in seismic imaging. Here I apply diffractional tomography to receiver functions recorded at USArray stations to map high-resolution topography of mantle transition-zone discontinuities. The images reveal a trail of anomalies that closely follow the surface hotspot track and correlate well with a seismic wave-speed gap in the subducting Farallon slab. This observation contradicts the plume model, which requires anomalies in the mid mantle to be confined in a narrow region directly beneath the present-day Yellowstone caldera. I propose an alternative interpretation of the Yellowstone volcanism. About 16 million years ago, a section of young slab that had broken off from a subducted spreading centre in the mantle first penetrated the 660 km discontinuity beneath Oregon and Idaho, and pulled down older stagnant slab. Slab tearing occurred along pre-existing fracture zones and propagated northeastward. This reversed-polarity subduction generated passive upwellings from the lower mantle, which ascended through a water-rich mantle transition zone to produce melting and age-progressive volcanism.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Location of the Yellowstone hotspot track.
Fig. 2: Mantle transition-zone discontinuities from receiver function diffraction tomography.
Fig. 3: 3D rendering and re-examination of S-wave slab anomalies in the western United States.
Fig. 4: Cartoon illustration of the stages of subduction in the western United States (not to scale).
Fig. 5: Cartoon illustration of reversed subduction (not to scale).
Fig. 6: Sketch of the Pacific and Farallon fracture zones.

References

  1. 1.

    Morgan, W. J. Deep mantle convection plumes and plate motions. Bull. Am. Assoc. Pet. Geol. 56, 203–213 (1972).

    Google Scholar 

  2. 2.

    Christiansen, R. L., Foulger, G. R. & Evans, J. R. Upper-mantle origin of the Yellowstone hotspot. Geol. Soc. Am. Bull. 114, 1245–1256 (2002).

    Article  Google Scholar 

  3. 3.

    Kincaid, C., Druken, K. A., Griffiths, R. W. & Stegman, D. R. Bifurcation of the Yellowstone plume driven by subduction-induced mantle flow. Nat. Geosci. 6, 395–399 (2013).

    Article  Google Scholar 

  4. 4.

    Leonard, T. & Liu, L. The role of a mantle plume in the formation of Yellowstone volcanism. Geophys. Res. Lett. 43, 1132–1139 (2016).

    Article  Google Scholar 

  5. 5.

    Burdick, S. et al. Upper mantle heterogeneity beneath North America from travel time tomography with global and USArray transportable array data. Seismol. Res. Lett. 79, 384–392 (2008).

    Article  Google Scholar 

  6. 6.

    Schmandt, B. & Humphreys, E. Complex subduction and small-scale convection revealed by body-wave tomography of the western United States upper mantle. Earth. Planet. Sci. Lett. 297, 435–445 (2010).

    Article  Google Scholar 

  7. 7.

    Sigloch, K., McQuarrie, N. & Nolet, G. Two-stage subduction history under North America inferred from multiple-frequency tomography. Nat. Geosci. 1, 458–462 (2008).

    Article  Google Scholar 

  8. 8.

    Sigloch, K. Mantle provinces under North America from multifrequency P wave tomography. Geochem. Geophys. Geosyst. 12, Q02W08 (2011).

    Article  Google Scholar 

  9. 9.

    James, D. E., Fouch, M. J., Carlson, R. W. & Roth, J. B. Slab fragmentation, edge flow and the origin of the Yellowstone hotspot track. Earth. Planet. Sci. Lett. 311, 124–135 (2011).

    Article  Google Scholar 

  10. 10.

    Tian, Y., Zhou, Y., Sigloch, K., Nolet, G. & Laske, G. Structure of North American mantle constrained by simultaneous inversion of multiple-frequency SH, SS, and Love waves. J. Geophys. Res. 116, B02307 (2011).

    Google Scholar 

  11. 11.

    Porritt, R. W., Allen, R. M. & Pollitz, F. F. Seismic imaging east of the Rocky Mountains with USArray. Earth. Planet. Sci. Lett. 402, 16–25 (2014).

    Article  Google Scholar 

  12. 12.

    van der Lee, S. & Nolet, G. Seismic imaging of the subducted trailing fragments of the Farallon plate. Nature 386, 266–269 (1997).

    Article  Google Scholar 

  13. 13.

    Zhou, Q., Liu, L. & Hu, J. Western US volcanism due to intruding oceanic mantle driven by ancient Farallon slabs. Nat. Geosci. 11, 70–76 (2018).

    Article  Google Scholar 

  14. 14.

    Cao, A. & Levander, A. High-resolution transition zone structures of the Gorda slab beneath the western United States: implication for deep water subduction. J. Geophys. Res. 115, B07301 (2010).

    Google Scholar 

  15. 15.

    Schmandt, B., Dueker, K., Humphreys, E. & Hansen, S. Hot mantle upwelling across the 660 beneath Yellowstone. Earth. Planet. Sci. Lett. 331, 224–236 (2012).

    Article  Google Scholar 

  16. 16.

    Gao, S. S. & Liu, K. H. Mantle transition zone discontinuities beneath the contiguous United States. J. Geophys. Res. Solid Earth 119, 6452–6468 (2014).

    Article  Google Scholar 

  17. 17.

    Katsura, T. & Ito, E. The system Mg2SiO4–Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modified spinel, and spinel. J. Geophys. Res. 94, 15,663–15,670 (1989).

    Article  Google Scholar 

  18. 18.

    Bina, C. R. & Helffrich, G. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. J. Geophys. Res. 99, 15,853–15,860 (1994).

    Article  Google Scholar 

  19. 19.

    Deng, K. & Zhou, Y. Wave diffraction and resolution of mantle transition zone discontinuities in receiver function imaging. Geophys. J. Int. 201, 2008–2025 (2015).

    Article  Google Scholar 

  20. 20.

    Wortel, M. J. R. & Spakman, W. Subduction and slab detachment in the Mediterranean–Carpathian region. Science 290, 1910–1917 (2000).

    Article  Google Scholar 

  21. 21.

    Williams, Q. & Hemley, R. Hydrogen in the deep earth. Annu. Rev. Earth. Planet. Sci. 29, 365–418 (2001).

    Article  Google Scholar 

  22. 22.

    Kohlstedt, D., Keppler, H. & Rubie, D. Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4. Contrib. Mineral. Petrol. 123, 345–357 (1996).

    Article  Google Scholar 

  23. 23.

    Murakami, M., Hirose, K., Yurimoto, H., Nakashima, S. & Takafuji, N. Water in Earth’s lower mantle. Science 295, 1885–1887 (2002).

    Article  Google Scholar 

  24. 24.

    Wang, X.-C., Wilde, S. S., Li, Q.-L. & Yang, Y.-N. Continental flood basalts derived from the hydrous mantle transition zone. Nat. Commun. 6, 7700 (2015).

    Article  Google Scholar 

  25. 25.

    Wei, S. S. & Shearer, P. M. A sporadic low-velocity layer atop the 410 km discontinuity beneath the Pacific Ocean. J. Geophys. Res. 122, 5144–5149 (2017).

    Article  Google Scholar 

  26. 26.

    Dickinson, W. R. & Snyder, W. S. Geometry of triple junctions related to San Andreas Transform. J. Geophys. Res. 84, 561–572 (1979).

    Article  Google Scholar 

  27. 27.

    Thorkelson, D. J. & Taylor, R. P. Cordilleran slab windows. Geology 17, 833–836 (1989).

    Article  Google Scholar 

  28. 28.

    Wang, Y. et al. Fossil slabs attached to unsubducted fragments of the Farallon plate. Proc. Natl Acad. Sci. USA 110, 5342–5346 (2013).

    Article  Google Scholar 

  29. 29.

    Piromallo, C., Becker, T. W., Funiciello, F. & Faccenna, C. Three-dimensional instantaneous mantle flow induced by subduction. Geophys. Res. Lett. 33, L08304 (2006).

    Article  Google Scholar 

  30. 30.

    DeMets, C. & Merkouriev, S. High-resolution reconstructions of Pacific–North America plate motion: 20 Ma to present. Geophys. J. Int. 207, 741–773 (2016).

    Article  Google Scholar 

  31. 31.

    Goff, J. A. & Cochran, J. R. The Bauer scarp ridge jump: a complex tectonic sequence revealed in satellite altimetry. Earth. Planet. Sci. Lett. 141, 21–33 (1996).

    Article  Google Scholar 

  32. 32.

    Lynn, W. S. & Lewis, B. T. R. Tectonic evolution of the northern Cocos plate. Geology 4, 718–722 (1976).

    Article  Google Scholar 

  33. 33.

    Anders, M. H. Constraints on North American plate velocity from the Yellowstone hotspot deformation field. Nature 369, 53–55 (1994).

    Article  Google Scholar 

  34. 34.

    Muller, R. D. et al. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu. Rev. Earth. Planet. Sci. 44, 107–138 (2016).

    Article  Google Scholar 

  35. 35.

    Laske, G., Masters, G., Ma, Z. & Pasyanos, M. Update on CRUST1.0—a 1-degree global model of Earth’s crust. EGU General. Assem. Conf. Abstr. 15, 2658 (2013).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the US National Science Foundation under Grants EAR-1737737 and EAR-1348131. Advanced Research Computing at Virginia Tech provided computational resources.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ying Zhou.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y. Anomalous mantle transition zone beneath the Yellowstone hotspot track. Nature Geosci 11, 449–453 (2018). https://doi.org/10.1038/s41561-018-0126-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing