Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Continental-scale decrease in net primary productivity in streams due to climate warming


Streams play a key role in the global carbon cycle. The balance between carbon intake through photosynthesis and carbon release via respiration influences carbon emissions from streams and depends on temperature. However, the lack of a comprehensive analysis of the temperature sensitivity of the metabolic balance in inland waters across latitudes and local climate conditions hinders an accurate projection of carbon emissions in a warmer future. Here, we use a model of diel dissolved oxygen dynamics, combined with high-frequency measurements of dissolved oxygen, light and temperature, to estimate the temperature sensitivities of gross primary production and ecosystem respiration in streams across six biomes, from the tropics to the arctic tundra. We find that the change in metabolic balance, that is, the ratio of gross primary production to ecosystem respiration, is a function of stream temperature and current metabolic balance. Applying this relationship to the global compilation of stream metabolism data, we find that a 1 °C increase in stream temperature leads to a convergence of metabolic balance and to a 23.6% overall decline in net ecosystem productivity across the streams studied. We suggest that if the relationship holds for similarly sized streams around the globe, the warming-induced shifts in metabolic balance will result in an increase of 0.0194 Pg carbon emitted from such streams every year.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Ecosystem-level activation energies of GPP and ER in streams.
Fig. 2: Relationship between Eap − Ear, current GPP/ER and mean daily temperature.
Fig. 3: Proportional change in GPP/ER under 1 °C warming as a function of current daily GPP/ER and mean water temperature.
Fig. 4: Predicted changes in GPP/ER and NEP under 1 °C warming.


  1. 1.

    Battin, T. J. et al. The boundless carbon cycle. Nat. Geosci. 2, 598–600 (2009).

    Article  Google Scholar 

  2. 2.

    Butman, D. et al. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting. Proc. Natl Acad. Sci. USA 113, 58–63 (2016).

    Article  Google Scholar 

  3. 3.

    Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 172–185 (2007).

    Article  Google Scholar 

  4. 4.

    Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article  Google Scholar 

  5. 5.

    Ciais, P et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 465–570 (IPCC, Cambridge Univ. Press, Cambridge, 2013).

  6. 6.

    Hotchkiss, E. et al. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat. Geosci. 8, 696–699 (2015).

    Article  Google Scholar 

  7. 7.

    Battin, T. J. et al. Biophysical controls on organic carbon fluxes in fluvial networks. Nat. Geosci. 1, 95–100 (2008).

    Article  Google Scholar 

  8. 8.

    Kaushal, S. S. et al. Rising stream and river temperatures in the United States. Front. Ecol. Environ. 8, 461–466 (2010).

    Article  Google Scholar 

  9. 9.

    Mohseni, O., Erickson, T. R. & Stefan, H. G. Sensitivity of stream temperatures in the United States to air temperatures projected under a global warming scenario. Water Resour. Res. 35, 3723–3733 (1999).

    Article  Google Scholar 

  10. 10.

    Allen, A., Gillooly, J. & Brown, J. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19, 202–213 (2005).

    Article  Google Scholar 

  11. 11.

    Galmes, J., Kapralov, M., Copolovici, L., Hermida-Carrera, C. & Niinemets, Ü. Temperature responses of the Rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade-offs, and importance for carbon gain. Photosynth. Res. 123, 183–201 (2015).

    Article  Google Scholar 

  12. 12.

    Chen, B. & Laws, E. A. Is there a difference of temperature sensitivity between marine phytoplankton and heterotrophs? Limnol. Oceanogr. 62, 806–817 (2017).

    Article  Google Scholar 

  13. 13.

    Follstad Shah, J. J. et al. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. Glob. Change Biol. 23, 3064–3075 (2017).

    Article  Google Scholar 

  14. 14.

    Duan, S.-W. & Kaushal, S. Warming increases carbon and nutrient fluxes from sediments in streams across land use. Biogeosciences 10, 1193–1207 (2013).

    Article  Google Scholar 

  15. 15.

    Raven, J. A. & Geider, R. J. Temperature and algal growth. New Phytol. 110, 441–461 (1988).

    Article  Google Scholar 

  16. 16.

    Anderson-Teixeira, K. J., Vitousek, P. M. & Brown, J. H. Amplified temperature dependence in ecosystems developing on the lava flows of Mauna Loa, Hawai’i. Proc. Natl Acad. Sci. USA 105, 228–233 (2008).

    Article  Google Scholar 

  17. 17.

    Welter, J. R. et al. Does N2 fixation amplify the temperature dependence of ecosystem metabolism? Ecology 96, 603–610 (2015).

    Article  Google Scholar 

  18. 18.

    Sand-Jensen, K., Pedersen, N. L. & Søndergaard, M. Bacterial metabolism in small temperate streams under contemporary and future climates. Freshw. Biol. 52, 2340–2353 (2007).

    Article  Google Scholar 

  19. 19.

    López-Urrutia, Á. & Morán, X. A. G. Resource limitation of bacterial production distorts the temperature dependence of oceanic carbon cycling. Ecology 88, 817–822 (2007).

    Article  Google Scholar 

  20. 20.

    Boyero, L. et al. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecol. Lett. 14, 289–294 (2011).

    Article  Google Scholar 

  21. 21.

    Acuna, V., Wolf, A., Uehlinger, U. & Tockner, K. Temperature dependence of stream benthic respiration in an alpine river network under global warming. Freshw. Biol. 53, 2076–2088 (2008).

    Article  Google Scholar 

  22. 22.

    Jankowski, K., Schindler, D. & Lisi, P. Temperature sensitivity of community respiration rates in streams is associated with watershed geomorphic features. Ecology 95, 2707–2714 (2014).

    Article  Google Scholar 

  23. 23.

    Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G. & Montoya, J. M. Warming alters the metabolic balance of ecosystems. Philos. Trans. R. Soc. Lond. B 365, 2117–2126 (2010).

    Article  Google Scholar 

  24. 24.

    Sinsabaugh, R. L. Large-scale trends for stream benthic respiration. J. N. Am. Benthol. Soc. 16, 119–122 (1997).

    Article  Google Scholar 

  25. 25.

    Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012).

    Article  Google Scholar 

  26. 26.

    Huryn, A. D., Benstead, J. P. & Parker, S. M. Seasonal changes in light availability modify the temperature dependence of ecosystem metabolism in an arctic stream. Ecology 95, 2826–2839 (2014).

    Article  Google Scholar 

  27. 27.

    Demars, B. O. et al. Temperature and the metabolic balance of streams. Freshw. Biol. 56, 1106–1121 (2011).

    Article  Google Scholar 

  28. 28.

    Perkins, D. M. et al. Consistent temperature dependence of respiration across ecosystems contrasting in thermal history. Glob. Change Biol. 18, 1300–1311 (2012).

    Article  Google Scholar 

  29. 29.

    Demars, B., Manson, J., Olafsson, J., Gislason, G. & Friberg, N. Stream hydraulics and temperature determine the metabolism of geothermal icelandic streams. Knowl. Manag. Aquat. Ecosyst. 402, 05 (2011).

    Article  Google Scholar 

  30. 30.

    Cross, W. F., Hood, J. M., Benstead, J. P., Huryn, A. D. & Nelson, D. Interactions between temperature and nutrients across levels of ecological organization. Glob. Change Biol. 21, 1025–1040 (2015).

    Article  Google Scholar 

  31. 31.

    Williamson, T. J. et al. Warming alters coupled carbon and nutrient cycles in experimental streams. Glob. Change Biol. 22, 2152–2164 (2016).

    Article  Google Scholar 

  32. 32.

    Demars, B. O. et al. Impact of warming on CO2 emissions from streams countered by aquatic photosynthesis. Nat. Geosci. 9, 758–761 (2016).

    Article  Google Scholar 

  33. 33.

    Holtgrieve, G. W., Schindler, D. E. & Jankowski, K. Comment on Demars et al. 2015, ‘Stream metabolism and the open diel oxygen method: principles, practice, and perspectives’. Limnol. Oceanogr. Methods 14, 110–113 (2016).

    Article  Google Scholar 

  34. 34.

    Mahecha, M. D. et al. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329, 838–840 (2010).

    Article  Google Scholar 

  35. 35.

    Standard Methods for the Examination of Water and Wastewater 19th edn (American Public Health Association, American Waterworks Association, Water Environment Federation, Washington, DC, 1995).

  36. 36.

    Jassby, A. D. & Platt, T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21, 540–547 (1976).

    Article  Google Scholar 

  37. 37.

    Parkhill, K. L. & Gulliver, J. S. Modeling the effect of light on whole-stream respiration. Ecol. Modell. 117, 333–342 (1999).

    Article  Google Scholar 

  38. 38.

    Bott, T. L. in Methods in Stream Ecology (eds Hauer, F. R & Lamberti, G. A) 533–556 (Academic Press, San Diego, 2006).

  39. 39.

    Song, C., Dodds, W. K., Trentman, M. T., Rüegg, J. & Ballantyne, F. Methods of approximation influence aquatic ecosystem metabolism estimates. Limnol. Oceanogr. Methods 14, 557–569 (2016).

    Article  Google Scholar 

  40. 40.

    Sierra, C. A. Temperature sensitivity of organic matter decomposition in the Arrhenius equation: some theoretical considerations. Biogeochemistry 108, 1 (2012).

    Article  Google Scholar 

  41. 41.

    Descamps-Julien, B. & Gonzalez, A. Stable coexistence in a fluctuating environment: an experimental demonstration. Ecology 86, 2815–2824 (2005).

    Article  Google Scholar 

  42. 42.

    Jiang, L. & Morin, P. J. Temperature fluctuation facilitates coexistence of competing species in experimental microbial communities. J. Anim. Ecol. 76, 660–668 (2007).

    Article  Google Scholar 

  43. 43.

    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article  Google Scholar 

  44. 44.

    Hoellein, T. J., Bruesewitz, D. A. & Richardson, D. C. Revisiting Odum (1956): a synthesis of aquatic ecosystem metabolism. Limnol. Oceanogr. 58, 2089–2100 (2013).

    Article  Google Scholar 

  45. 45.

    Wollheim, W. M. et al. Global N removal by freshwater aquatic systems using a spatially distributed, within-basin approach. Glob. Biogeochem. Cycles 22, GB2026 (2008).

    Article  Google Scholar 

  46. 46.

    Wetzel, R. G. & Likens, G. E. Limnological Analysis 3rd edn (Springer, Berlin, 2013).

    Google Scholar 

  47. 47.

    Freeman, C., Evans, C., Monteith, D., Reynolds, B. & Fenner, N. Export of organic carbon from peat soils. Nature 412, 785–785 (2001).

    Article  Google Scholar 

  48. 48.

    Kominoski, J. S. et al. Forecasting functional implications of global changes in riparian plant communities. Front. Ecol. Environ. 11, 423–432 (2013).

    Article  Google Scholar 

  49. 49.

    Padfield, D., Yvon-Durocher, G., Buckling, A., Jennings, S. & Yvon-Durocher, G. Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton. Ecol. Lett. 19, 133–142 (2016).

    Article  Google Scholar 

  50. 50.

    Demars, B. O., Thompson, J. & Manson, J. R. Stream metabolism and the open diel oxygen method: principles, practice, and perspectives. Limnol. Oceanogr. Methods 13, 356–374 (2015).

    Article  Google Scholar 

  51. 51.

    Rüegg, J. et al. Baseflow physical characteristics differ at multiple spatial scales in stream networks across diverse biomes. Landsc. Ecol. 31, 119–136 (2016).

    Article  Google Scholar 

  52. 52.

    Holtgrieve, G. W., Schindler, D. E., Branch, T. A. & A’mar, Z. T. Simultaneous quantification of aquatic ecosystem metabolism and reaeration using a Bayesian statistical model of oxygen dynamics. Limnol. Oceanogr. 55, 1047–1063 (2010).

    Article  Google Scholar 

  53. 53.

    Riley, A. J. & Dodds, W. K. Whole-stream metabolism: strategies for measuring and modeling diel trends of dissolved oxygen. Freshw. Sci. 32, 56–69 (2012).

    Article  Google Scholar 

  54. 54.

    Grace, M. R. et al. Fast processing of diel oxygen curves: estimating stream metabolism with BASE (BAyesian Single-station Estimation). Limnol. Oceanogr. Methods 13, 103–114 (2015).

    Article  Google Scholar 

  55. 55.

    Soetaert, K., Petzoldt, T. & Setzer, R. W. Solving differential equations in R: package desolve. J. Stat. Softw. 33, 1–25 (2010).

    Google Scholar 

  56. 56.

    Haario, H Saksman, E. & Tamminen, J. An adaptive metropolis algorithm. Bernoulli 7, 223–242 2001).

    Article  Google Scholar 

  57. 57.

    Geyer, C. J. & Johnson, L. T. mcmc: Markov Chain Monte Carlo. R package v.0.9-3 (CRAN, 2014).

  58. 58.

    Geweke, J. in Bayesian Statistics (eds. Bernado, J. et al.) 169–193 (Clarendon Press, Oxford, 1992).

  59. 59.

    Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R. News 6, 7–11 (2006).

    Google Scholar 

  60. 60.

    Kenward, M. G., & Roger, J. H. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53, 983–997 (1997).

    Article  Google Scholar 

  61. 61.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  62. 62.

    Halekoh, U. & Højsgaard, S. A Kenward–Roger approximation and parametric bootstrap methods for tests in linear mixed models – the R package pbkrtest. J. Stat. Softw. 59, 1–30 (2014).

    Article  Google Scholar 

  63. 63.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).

Download references


The authors thank K. Gido for his contribution in obtaining funding and designing the field experiments. K. Gido, J. Drake, C. Osenberg and J. Minucci provided comments on earlier versions of this paper. Georgia Advanced Computing Resource Center provided the computing facility. This study was supported by the National Science Foundation (NSF, grant EF-1258994) and is part of the Scale, Consumers and Lotic Ecosystem Rates project supported by NSF grant EF-1065255. Data collection at each site was supported by NSF grants EF-1065286, EF-1065055, EF-1065682, EF-1065267, EF-1064998 and EF-1065377, and the Northern Australian Environmental Resources Hub of the National Environmental Science Program.

Author information




C.S. and F.B. conceived the modelling approach to estimating temperature sensitivity. C.S. performed metabolism modelling, conducted the data analyses, and wrote the manuscript. W.K.D., J.R., A.A., W.B.B., M.M.D., M.B.F., E.A.G., A.M.H., T.K.H., J.B.J., J.S.K., W.H.M., A.D.R., M.R.W., W.M.W. and F.B. designed the field experiments. W.K.D., A.A., W.B.B., M.B.F., T.K.H., J.B.J., J.S.K., W.H.M., A.D.R., M.R.W., W.M.W. and F.B. obtained funding. J.R., A.A., C.L.B., K.J.F., E.A.G., L.E.K., D.M., S.P.P., C.M.R., K.R.S. and M.T.T. collected the data. S.J. and J.R. managed the database. All authors provided feedback on the manuscript.

Corresponding author

Correspondence to Chao Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisherʼs note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures

Supplementary Dataset 1

Supplementary Data

Supplementary Dataset 2

Supplementary Data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, C., Dodds, W.K., Rüegg, J. et al. Continental-scale decrease in net primary productivity in streams due to climate warming. Nature Geosci 11, 415–420 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing