Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Episodic magmatism and serpentinized mantle exhumation at an ultraslow-spreading centre

Abstract

Mid-ocean ridges spreading at ultraslow rates of less than 20 mm yr−1 can exhume serpentinized mantle to the seafloor, or they can produce magmatic crust. However, seismic imaging of ultraslow-spreading centres has not been able to resolve the abundance of serpentinized mantle exhumation, and instead supports 2 to 5 km of crust. Most seismic crustal thickness estimates reflect the depth at which the 7.1 km s−1 P-wave velocity is exceeded. Yet, the true nature of the oceanic lithosphere is more reliably deduced using the P- to S-wave velocity (Vp/Vs) ratio. Here we report on seismic data acquired along off-axis profiles of older oceanic lithosphere at the ultraslow-spreading Mid-Cayman Spreading Centre. We suggest that high Vp/Vs ratios greater than 1.9 and continuously increasing P-wave velocity, changing from 4 km s−1 at the seafloor to greater than 7.4 km s−1 at 2 to 4 km depth, indicate highly serpentinized peridotite exhumed to the seafloor. Elsewhere, either magmatic crust or serpentinized mantle deformed and uplifted at oceanic core complexes underlies areas of high bathymetry. The Cayman Trough therefore provides a window into mid-ocean ridge dynamics that switch between magma-rich and magma-poor oceanic crustal accretion, including exhumation of serpentinized mantle covering about 25% of the seafloor in this region.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cayman Trough bathymetry and layout of seismic experiment.
Fig. 2: Seismic results.
Fig. 3: P-wave properties of magmatic and amagmatic domains.
Fig. 4: Vp/Vs ratio as a proxy for rock types and mantle serpentinization.

Similar content being viewed by others

References

  1. Searle, R. Mid-Ocean Ridges (Cambridge Univ. Press, Cambridge, 2013).

  2. White, R. S., Minshull, T. A., Bickle, M. & Robinson, C. J. Melt generation at very slow-spreading oceanic ridges: constraints from geochemical and geophysical data. J. Petrol. 42, 1171–1196 (2001).

    Article  Google Scholar 

  3. Jokat, W. & Schmidt-Aursch, M. C. Geophysical characteristics of the ultraslow spreading Gakkel Ridge, Arctic Ocean. Geophys. J. Int. 168, 983–998 (2007).

    Article  Google Scholar 

  4. Minshull, T. A., Muller, M. R. & White, R. S. Crustal structure of the Southwest Indian Ridge at 66°E: seismic constraints. Geophys. J. Int. 166, 135–147 (2006).

    Article  Google Scholar 

  5. van Avendonk, H. J. A., Davis, J. K., Harding, J. L. & Lawver, L. A. Decrease in oceanic crustal thickness since the breakup of Pangaea. Nat. Geosci. 10, 58–62 (2017).

    Article  Google Scholar 

  6. Dick, H. J. B., Lin, J. & Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 426, 405–412 (2003).

    Article  Google Scholar 

  7. Michael, P. J. et al. Magmatic and amagmatic seafloor generation at the ultraslow spreading Gakkel Ridge, Arctic Ocean. Nature 423, 956–961 (2003).

    Article  Google Scholar 

  8. Sauter, D. et al. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nat. Geosci. 6, 314–320 (2013).

    Article  Google Scholar 

  9. Smith, D. K., Cann, J. R. & Escartin, J. Widespread active detachment faulting and core complex formation near 13°N on the Mid-Atlantic Ridge. Nature 442, 440–443 (2006).

    Article  Google Scholar 

  10. Canales, J. P., Tucholke, B. E., Xu, M., Collins, J. A. & DuBois, D. L. Seismic evidence for large-scale compositional heterogeneity of oceanic core complexes. Geochem. Geophys. Geosyst. 9, Q08002 (2008).

    Article  Google Scholar 

  11. Blackman, D. K. et al. Drilling constraints on lithospheric accretion and evolution at Atlantis Massif, Mid‐Atlantic Ridge 30°N. J. Geophys. Res. 116, B07103 (2011).

    Article  Google Scholar 

  12. Dick, H. J. B. et al. A long in-situ section of the lower ocean crust: results of ODP leg 176 drilling at the Southwest Indian Ridge. Earth Planet. Sci. 179, 31–51 (2000).

    Article  Google Scholar 

  13. White, R. S., McKenzie, D. & O’Nions, R. K. Oceanic crustal thickness from seismic measurements and rare earth element inversions. J. Geophys. Res. 97, 19683–19715 (1992).

    Article  Google Scholar 

  14. Grevemeyer, I., Ranero, C. R. & Ivandic, M. Structure of oceanic crust and serpentinization at subduction trenches. Geosphere 14, 395–418 (2018).

    Article  Google Scholar 

  15. Carlson, R. L. & Jay Miller, D. Influence of pressure and mineralogy on seismic velocities in oceanic gabbros: implications for the composition and state of the lower oceanic crust. J. Geophys. Res. 109, B09205 (2004).

    Article  Google Scholar 

  16. Prada, M. et al. Mantle exhumation and sequence of magmatic events in the Magnaghi-Vavilov Basin (Central Tyrrhenian, Italy): new constraints from geological and geophysical observations. Tectonophysics 689, 133–142 (2016).

    Article  Google Scholar 

  17. Dean, S. M., Minshull, T. A., Whitmarsh, R. B. & Louden, K. E. Deep structure of the ocean-continent transition in the southern Iberia abyssal plain from seismic refraction profiles: the IAM-9 transect at 40°20′N. J. Geophys. Res. 105, 5859–5885 (2000).

    Article  Google Scholar 

  18. Bullock, A. D. & Minshull, T. A. From continental extension to seafloor spreading: crustal structure of the Goban Spur rifted margin, southwest of the UK. Geophys. J. Int. 163, 527–546 (2005).

    Article  Google Scholar 

  19. Christensen, N. I. Serpentinites, peridotites, and seismology. Int. Geol. Rev. 46, 795–816 (2004).

    Article  Google Scholar 

  20. Carlson, R. L. & Miller, D. J. A new assessment of the abundance of serpentinite in the oceanic crust. Geophys. Res. Lett. 24, 457–460 (1997).

    Article  Google Scholar 

  21. Hayman, N. W. et al. Oceanic core complex development at the ultraslow spreading Mid‐Cayman Spreading Centre. Geochem. Geophys. Geosyst. 12, Q0AG02 (2011).

    Article  Google Scholar 

  22. Rosencrantz, E., Malcom, R. I. & Sclater, J. G. Age and spreading history of the Cayman trough as determined from depth, heat flow, and magnetic anomalies. J. Geophys. Res. 93, 2141–2157 (1988).

    Article  Google Scholar 

  23. Klein, E. M. & Langmuir, C. H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res. 92, 8089–8115 (1987).

    Article  Google Scholar 

  24. Connelly, D. P. et al. Hydrothermal vent fields and chemosynthetic biota on the world’s deepest seafloor spreading centre. Nat. Commun. 3, 620 (2012).

    Article  Google Scholar 

  25. Harding, J. L. et al. Magmatic-tectonic conditions for hydrothermal venting on an ultraslow-spread oceanic core complex. Geology 45, 839–842 2017).

    Article  Google Scholar 

  26. Van Avendonk, H. J. A. et al. Seismic structure and segmentation of the axial valley of the Mid-Cayman spreading centre. Geochem. Geophys. Geosyst. 18, 2149–2161 (2017).

    Article  Google Scholar 

  27. ten Brink, U., Coleman, D. & Dillon, W. P. The nature of the crust under Cayman Trough from gravity. Mar. Pet. Geol. 19, 971–987 (2002).

    Article  Google Scholar 

  28. Cannat, M. et al. Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid‐Atlantic Ridge (22°–24°N). Geology 23, 49–52 (1995).

    Article  Google Scholar 

  29. Lizarralde, D., Gaherty, J. B., Collins, J. A., Hirth, G. & Kim, S. D. Spreading-rate dependence of melt extraction at mid-ocean ridges from mantle refraction data. Nature 432, 744–747 (2004).

    Article  Google Scholar 

  30. Dannowski, A. et al. Crustal structure of the propagating TAMMAR ridge segment on the Mid‐Atlantic Ridge, 21.5°N. Geochem. Geophys. Geosyst. 12, Q07012 (2011).

    Article  Google Scholar 

  31. Früh-Green, G. L., Connolly, J. A. D., Plas, A., Kelley, D. S. & Grobety, B. Serpentinization of oceanic peridotites: implications for geochemical cycles and biological activity. Geophys. Monogr. 114, 119–136 (2004).

    Google Scholar 

  32. Cannat, M., Fontaine, F. J. and Escartín, J. in Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges (eds Rona, P. A. et al.) 241–263 (AGU, Washington, DC, 2010).

  33. Olive, J.-A., Behn, M. D. & Tucholke, B. E. The structure of oceanic core complexes controlled by the depth distribution of magma emplacement. Nat. Geosci. 3, 491–495 (2010).

    Article  Google Scholar 

  34. Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 9, Q04006 (2008).

    Article  Google Scholar 

  35. Minshull, T. A., Sinha, M. C. & Peirce, C. Multi-disciplinary, sub-seabed geophysical imaging: a new pool of 28 seafloor instruments in use by the United Kingdom Ocean Bottom Instrument Consortium. Sea Technol. 46, 27–31 (2005).

    Google Scholar 

  36. Korenaga, J. et al. Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography. J. Geophys. Res. 105, 21591–21614 (2000).

    Article  Google Scholar 

  37. Kahle, R. L., Tilmann, F. & Grevemeyer, I. Crustal structure and kinematics of the TAMMAR propagating rift system on the Mid-Atlantic Ridge from seismic refraction and satellite altimetry gravity. Geophys. J. Int. 206, 1382–1397 (2016).

    Article  Google Scholar 

  38. Tarantola, A. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. (Elsevier Science: New York, NY, 1987).

    Google Scholar 

  39. Toomey, D. R. & Foulger, G. R. Tomographic inversion of local earthquake data from Hengill-Grensdalur central volcano complex, Iceland. J. Geophys. Res. 94, 17497–17510 (1989).

    Article  Google Scholar 

  40. Johnston, J. E. & Christensen, N. I. Seismic properties of layer 2 basalts. Geophys. J. Int. 128, 285–300 (1997).

    Article  Google Scholar 

  41. Christensen, N. I., Wepfer, W. W. & Baus, R. D. Seismic properties of sheeted dikes from hole 504B, ODP leg 111. Proc. Ocean Drill. Prog. Sci. Res. 111, 171–176 (1989).

    Google Scholar 

  42. Salisbury, M. H. et al. Old oceanic crust: synthesis of logging, laboratory, and seismic data from leg 102. Proc. Ocean Drill. Prog. Sci. Res. 102, 155–180 (1988).

    Google Scholar 

  43. Wilkens, R. H., Christensen, N. I. and Slater, L. in High-Pressure Seismic Studies of Leg 69 and 70 Basalts (eds Cann, J. R. et al.) Initial Reports DSDP 69, 683–686 (US Government Printing Office, Washington, DC, 1983).

  44. Iturrino, G. J., Christensen, N. I., Kirby, S. & Salisbury, M. H. Seismic velocities and elastic properties of oceanic gabbroic rocks from hole 735B. Proc. Ocean Drill. Prog. Sci. Res. 118, 227–244 (1991).

    Google Scholar 

  45. Iturrino, G. J., Miller, D. J. & Christensen, N. I. Velocity behavior of lower crustal and upper mantle rocks from a fast-spreading ridge at Hess Deep. Proc. Ocean Drill. Prog. Sci. Res. 147, 417–440 (1996).

    Google Scholar 

  46. Miller, D. J. & Christensen, N. I. Seismic velocities of lower crustal and upper mantle rocks from the slow spreading Mid-Atlantic Ridge, south of the Kane Tranform Zone (MARK). Proc. Ocean Drill. Prog. Sci. Res. 153, 437–454 (1997).

    Google Scholar 

  47. Christensen, N. I. Elasticity of ultrabasic rocks. J. Geophys. Res. 71.24, 5921–5931 (1966).

    Article  Google Scholar 

  48. Christensen, N. I. The abundance of serpentinites in the oceanic crust. J. Geol. 80, 709–719 (1972).

    Article  Google Scholar 

  49. Christensen, N. I. Ophiolites, seismic velocities and oceanic crustal structure. Tectonophysics 47, 131–157 (1978).

    Article  Google Scholar 

  50. Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E. & Francis, R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346, 65–67 (2014).

    Article  Google Scholar 

  51. Talwani, M., Worzel, J. L. & Landisman, M. Rapid gravity computation for two-dimensional bodies with application to the Mendocino Submarine Fracture Zone. J. Geophys. Res. 64, 49–59 (1959).

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this project was obtained from the German Science Foundation (DFG), supporting RV METEOR cruise M115, from the US National Science Foundation (NSF) under grant OCE-1356895, and from the British Natural Environment Research Council (NERC) under grant NE/K011162/1. The authors thank the captain, officers, crew and scientific party of RV METEOR for their assistance during the CAYSEIS cruise.

Author information

Authors and Affiliations

Authors

Contributions

I.G., N.W.H., H.J.A.v.A., C.Pe. and A.D. planned the survey and obtained the funding. All co-authors contributed to collecting data at sea and discussed results. C.Pa., I.G. and M.S. processed the data. I.G. and M.S. conducted seismic inversions and error analysis. C.Pe. conducted the analysis of the gravity data. I.G., N.W.H. and C.Pe. wrote the paper with input from H.J.A.v.A. and all authors commented on the manuscript.

Corresponding author

Correspondence to Ingo Grevemeyer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grevemeyer, I., Hayman, N.W., Peirce, C. et al. Episodic magmatism and serpentinized mantle exhumation at an ultraslow-spreading centre. Nature Geosci 11, 444–448 (2018). https://doi.org/10.1038/s41561-018-0124-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0124-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing