Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global diffusive fluxes of methane in marine sediments


Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of the methane oxidation barrier. Our new budget suggests that 45–61 Tg of methane are oxidized with sulfate annually, with approximately 80% of this oxidation occurring in continental shelf sediments (<200 m water depth). Using anaerobic oxidation as a nearly quantitative sink for methane in steady-state diffusive sediments, we calculate that ~3–4% of the global organic carbon flux to the seafloor is converted to methane. We further report a global imbalance of diffusive methane and sulfate fluxes into the sulfate–methane transition with no clear trend with respect to the corresponding depth of the methane oxidation barrier. The observed global mean net flux ratio between sulfate and methane of 1.4:1 indicates that, on average, the methane flux to the sulfate–methane transition accounts for only ~70% of the sulfate consumption in the sulfate–methane transition zone of marine sediments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Global distribution of investigated sites.
Fig. 2: Observed global empirical relationships.
Fig. 3: Global maps.


  1. 1.

    Reeburgh, W. Oceanic methane biogeochemistry. Am. Chem. Soc. 107, 486–513 (2007).

    Google Scholar 

  2. 2.

    Knittel, K. & Boetius, A. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311–334 (2009).

    Article  Google Scholar 

  3. 3.

    Saunois, M. et al. The global methane budget 2000 – 2012. Earth Syst. Sci. Data 8, 697–751 (2016).

    Article  Google Scholar 

  4. 4.

    Dickens, G. R. Hydrocarbon-driven warming. Nature 429, 513–515 (2004).

    Article  Google Scholar 

  5. 5.

    Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).

    Article  Google Scholar 

  6. 6.

    Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E. & Boetius, A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590 (2015).

    Article  Google Scholar 

  7. 7.

    Milucka, J. et al. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491, 541–6 (2012).

    Article  Google Scholar 

  8. 8.

    McGlynn, S. E., Chadwick, G. L., Kempes, C. P. & Orphan, V. J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535 (2015).

    Article  Google Scholar 

  9. 9.

    Bar-Or, I. et al. Iron-coupled anaerobic oxidation of methane performed by a mixed bacterial-archaeal community based on poorly-reactive minerals. Environ. Sci. Technol. 51, 12293–12301 (2017).

    Article  Google Scholar 

  10. 10.

    Scheller, S., Yu, H., Chadwick, G. L., McGlynn, S. E. & Orphan, V. J. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351, 703–707 (2016).

    Article  Google Scholar 

  11. 11.

    Beal, E. J., House, C. H. & Orphan, V. J. Manganese- and iron-dependent marine methane oxidation. Science 325, 184–187 (2009).

    Article  Google Scholar 

  12. 12.

    Raghoebarsing, A. A. et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918–921 (2006).

    Article  Google Scholar 

  13. 13.

    Ettwig, K. F. et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc. Natl Acad. Sci. USA 113, 12792–12796 (2016).

    Article  Google Scholar 

  14. 14.

    Egger, M. et al. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environ. Sci. Technol. 49, 277–283 (2015).

    Article  Google Scholar 

  15. 15.

    Gao, Y. et al. Anaerobic oxidation of methane coupled with extracellular electron transfer to electrodes. Sci. Rep. 7, 5099 (2017).

    Article  Google Scholar 

  16. 16.

    Henrichs, S. M. & Reeburgh, W. S. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. J. 5, 191–237 (1987).

    Article  Google Scholar 

  17. 17.

    Hinrichs, K.-U. & Boetius, A. in Ocean Margin Systems (eds Wefer, G. et al.) 457–477 (Springer, Berlin, 2002).

  18. 18.

    Flury, S. et al. Controls on subsurface methane fluxes and shallow gas formation in Baltic Sea sediment (Aarhus Bay, Denmark). Geochim. Cosmochim. Acta 188, 297–309 (2016).

    Article  Google Scholar 

  19. 19.

    Middelburg, J. J. A simple rate model for organic matter decomposition in marine sediments. Geochim. Cosmochim. Acta 53, 1577–1581 (1989).

    Article  Google Scholar 

  20. 20.

    Arndt, S. et al. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth Sci. Rev. 123, 53–86 (2013).

    Article  Google Scholar 

  21. 21.

    Regnier, P. et al. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: a modeling perspective. Earth Sci. Rev. 106, 105–130 (2011).

    Article  Google Scholar 

  22. 22.

    Middelburg, J. J., Soetart, K. & Herman, P. M. J. Empirical relationships for use in global diagenetic models. Deep Sea Res. Pt I 44, 327–344 (1997).

    Article  Google Scholar 

  23. 23.

    Amante, C. & Eakings, B. W. ETOPO 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis Technical Memorandum NESDIS NGDC-24 (NOAA National Geophysical Data Center, 2009).

  24. 24.

    Stumpf, R. P. & Potemra, J. Distance to Nearest Coastline: 0.01-Degree Grid (NASA Goddard Space Flight Center, Ocean Color Group, 2012).

  25. 25.

    Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Ocean Color Data (NASA Goddard Space Flight Center, Ocean Biology Processing Group, 2014).

  26. 26.

    Bowles, M. W., Mogollón, J. M. & Kasten, S. Global rates of marine sulfate reduction and implications for sub-sea-floor metabolic activities. Science 344, 889–891 (2014).

    Article  Google Scholar 

  27. 27.

    Divins, D. L. Total Sediment Thickness of the World’s Oceans and Marginal Seas (NOAA National Geophysical Data Center, 2003).

  28. 28.

    Valentine, D. L. Biogeochemistry and microbial ecology of methane oxidation in anoxic environment: a review. Anton. Van Leeuw. J. Microb. 81, 271–282 (2002).

    Article  Google Scholar 

  29. 29.

    Jørgensen, B. B. & Kasten, S. in Marine Geochemistry (eds. Schulz, H. D. & Zabel, M.) 271–309 (Springer, Berlin, 2006).

  30. 30.

    Mogollón, J. M., Dale, A. W., Fossing, H. & Regnier, P. Timescales for the development of methanogenesis and free gas layers in recently-deposited sediments of Arkona Basin (Baltic Sea). Biogeosciences 9, 1915–1933 (2012).

    Article  Google Scholar 

  31. 31.

    Jørgensen, B. B., Weber, A. & Zopfi, J. Sulfate reduction and anaerobic methane oxidation in Black Sea sediments. Deep Sea Res. Part I Oceanogr. Res. Pap. 48, 2097–2120 (2001).

    Article  Google Scholar 

  32. 32.

    Komada, T. et al. Organic matter cycling across the sulfate-methane transition zone of the Santa Barbara Basin, California Borderland. Geochim. Cosmochim. Acta 176, 259–278 (2016).

    Article  Google Scholar 

  33. 33.

    Jørgensen, B. B. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. II. Calculations from mathematical models. Geomicrobiol. J. 1, 29–51 (1978).

    Article  Google Scholar 

  34. 34.

    Beulig, F., Røy, H., Glombitza, C. & Jørgensen, B. B. Control on rate and pathway of anaerobic organic carbon degradation in the seabed. Proc. Natl Acad. Sci. USA 115, 367–372 (2018).

    Article  Google Scholar 

  35. 35.

    Sivan, O., Antler, G., Turchyn, A. V., Marlow, J. J. & Orphan, V. J. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps. Proc. Natl Acad. Sci. USA 111, 4139–4147 (2014).

    Article  Google Scholar 

  36. 36.

    Holmkvist, L., Ferdelman, T. G. & Jørgensen, B. B. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim. Cosmochim. Acta 75, 3581–3599 (2011).

    Article  Google Scholar 

  37. 37.

    Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Glob. Biogeochem. Cycles 21, GB4006 (2007).

    Article  Google Scholar 

  38. 38.

    Wallmann, K. et al. The global inventory of methane hydrate in marine sediments: a theoretical approach. Energies 5, 2449–2498 (2012).

    Article  Google Scholar 

  39. 39.

    Muller-Karger, F. E. et al. The importance of continental margins in the global carbon cycle. Geophys. Res. Lett. 32, L01602 (2005).

    Article  Google Scholar 

  40. 40.

    Riedinger, N. et al. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology 12, 172–181 (2014).

    Article  Google Scholar 

  41. 41.

    Egger, M. et al. Iron oxide reduction in methane-rich deep Baltic Sea sediments. Geochim. Cosmochim. Acta 207, 256–276 (2017).

    Article  Google Scholar 

  42. 42.

    März, C., Hoffmann, J., Bleil, U., de Lange, G. J. & Kasten, S. Diagenetic changes of magnetic and geochemical signals by anaerobic methane oxidation in sediments of the Zambezi deep-sea fan (SW Indian Ocean). Mar. Geol. 255, 118–130 (2008).

    Article  Google Scholar 

  43. 43.

    Sapart, C. J. et al. The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis. Biogeosciences 14, 2283–2292 (2017).

    Article  Google Scholar 

  44. 44.

    Best, A. I. et al. Shallow seabed methane gas could pose coastal hazard. Eos 87, 213–220 (2006).

    Article  Google Scholar 

  45. 45.

    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    Article  Google Scholar 

  46. 46.

    Middelburg, J. J. & Levin, L. A. Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6, 3655–3706 (2009).

    Article  Google Scholar 

  47. 47.

    Rooze, J., Egger, M., Tsandev, I. & Slomp, C. P. Iron-dependent anaerobic oxidation of methane in coastal surface sediments: potential controls and impact. Limnol. Oceanogr. 61, S267–S282 (2016).

    Article  Google Scholar 

  48. 48.

    Soetaert, K., Petzoldt, T. & Meysman, F. J. R. marelac: Tools for Aquatic Sciences. R Package v.2.1.3 (CRAN, 2010).

  49. 49.

    Boudreau, B. P. Diagenetic Models and Their Implementation: Modelling Transport and Reactions in Aquatic Sediments (Springer, Heidelberg, 1997).

  50. 50.

    Burwicz, E. B., Rüpke, L. H. & Wallmann, K. Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction-transport modeling and a novel parameterization of Holocene sedimentation. Geochim. Cosmochim. Acta 75, 4562–4576 (2011).

    Article  Google Scholar 

  51. 51.

    Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C. & D’Hondt, S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc. Natl Acad. Sci. USA 109, 16213–16216 (2012).

    Article  Google Scholar 

Download references


We thank R. N. Glud, F. J. R. Meysman and F.-D. Bockelmann for sharing their sedimentation rate database (data collection at Vrije Universiteit Brussel in the framework of FWO Odysseus project G.0929.08) and several other scientists for providing unpublished geochemical data. This work was funded by the Max Planck Society, by an ERC Advanced Grant to B.B.J. (MICROENERGY, EU 7th FP, grant no. 294200) and by the Danish National Research Foundation (DNRF grant no. 104). Additional support (for J.M.M.) was provided by the Netherlands Earth System Science Centre (NESSC).

Author information




M.E., N.R. and B.B.J. designed research. M.E. performed research. M.E. and N.R. compiled and processed data. M.E. and J. M. M. performed ArcGIS modelling. M.E. wrote the paper with contributions from all co-authors. B.B.J. obtained the funding for this work.

Corresponding author

Correspondence to Matthias Egger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information

Supplementary Data Set

Supplementary Data Set

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Egger, M., Riedinger, N., Mogollón, J.M. et al. Global diffusive fluxes of methane in marine sediments. Nature Geosci 11, 421–425 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing