Article | Published:

Global diffusive fluxes of methane in marine sediments

Nature Geosciencevolume 11pages421425 (2018) | Download Citation


Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of the methane oxidation barrier. Our new budget suggests that 45–61 Tg of methane are oxidized with sulfate annually, with approximately 80% of this oxidation occurring in continental shelf sediments (<200 m water depth). Using anaerobic oxidation as a nearly quantitative sink for methane in steady-state diffusive sediments, we calculate that ~3–4% of the global organic carbon flux to the seafloor is converted to methane. We further report a global imbalance of diffusive methane and sulfate fluxes into the sulfate–methane transition with no clear trend with respect to the corresponding depth of the methane oxidation barrier. The observed global mean net flux ratio between sulfate and methane of 1.4:1 indicates that, on average, the methane flux to the sulfate–methane transition accounts for only ~70% of the sulfate consumption in the sulfate–methane transition zone of marine sediments.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Reeburgh, W. Oceanic methane biogeochemistry. Am. Chem. Soc. 107, 486–513 (2007).

  2. 2.

    Knittel, K. & Boetius, A. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311–334 (2009).

  3. 3.

    Saunois, M. et al. The global methane budget 2000 – 2012. Earth Syst. Sci. Data 8, 697–751 (2016).

  4. 4.

    Dickens, G. R. Hydrocarbon-driven warming. Nature 429, 513–515 (2004).

  5. 5.

    Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).

  6. 6.

    Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E. & Boetius, A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590 (2015).

  7. 7.

    Milucka, J. et al. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491, 541–6 (2012).

  8. 8.

    McGlynn, S. E., Chadwick, G. L., Kempes, C. P. & Orphan, V. J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535 (2015).

  9. 9.

    Bar-Or, I. et al. Iron-coupled anaerobic oxidation of methane performed by a mixed bacterial-archaeal community based on poorly-reactive minerals. Environ. Sci. Technol. 51, 12293–12301 (2017).

  10. 10.

    Scheller, S., Yu, H., Chadwick, G. L., McGlynn, S. E. & Orphan, V. J. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351, 703–707 (2016).

  11. 11.

    Beal, E. J., House, C. H. & Orphan, V. J. Manganese- and iron-dependent marine methane oxidation. Science 325, 184–187 (2009).

  12. 12.

    Raghoebarsing, A. A. et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918–921 (2006).

  13. 13.

    Ettwig, K. F. et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc. Natl Acad. Sci. USA 113, 12792–12796 (2016).

  14. 14.

    Egger, M. et al. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environ. Sci. Technol. 49, 277–283 (2015).

  15. 15.

    Gao, Y. et al. Anaerobic oxidation of methane coupled with extracellular electron transfer to electrodes. Sci. Rep. 7, 5099 (2017).

  16. 16.

    Henrichs, S. M. & Reeburgh, W. S. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. J. 5, 191–237 (1987).

  17. 17.

    Hinrichs, K.-U. & Boetius, A. in Ocean Margin Systems (eds Wefer, G. et al.) 457–477 (Springer, Berlin, 2002).

  18. 18.

    Flury, S. et al. Controls on subsurface methane fluxes and shallow gas formation in Baltic Sea sediment (Aarhus Bay, Denmark). Geochim. Cosmochim. Acta 188, 297–309 (2016).

  19. 19.

    Middelburg, J. J. A simple rate model for organic matter decomposition in marine sediments. Geochim. Cosmochim. Acta 53, 1577–1581 (1989).

  20. 20.

    Arndt, S. et al. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth Sci. Rev. 123, 53–86 (2013).

  21. 21.

    Regnier, P. et al. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: a modeling perspective. Earth Sci. Rev. 106, 105–130 (2011).

  22. 22.

    Middelburg, J. J., Soetart, K. & Herman, P. M. J. Empirical relationships for use in global diagenetic models. Deep Sea Res. Pt I 44, 327–344 (1997).

  23. 23.

    Amante, C. & Eakings, B. W. ETOPO 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis Technical Memorandum NESDIS NGDC-24 (NOAA National Geophysical Data Center, 2009).

  24. 24.

    Stumpf, R. P. & Potemra, J. Distance to Nearest Coastline: 0.01-Degree Grid (NASA Goddard Space Flight Center, Ocean Color Group, 2012).

  25. 25.

    Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Ocean Color Data (NASA Goddard Space Flight Center, Ocean Biology Processing Group, 2014).

  26. 26.

    Bowles, M. W., Mogollón, J. M. & Kasten, S. Global rates of marine sulfate reduction and implications for sub-sea-floor metabolic activities. Science 344, 889–891 (2014).

  27. 27.

    Divins, D. L. Total Sediment Thickness of the World’s Oceans and Marginal Seas (NOAA National Geophysical Data Center, 2003).

  28. 28.

    Valentine, D. L. Biogeochemistry and microbial ecology of methane oxidation in anoxic environment: a review. Anton. Van Leeuw. J. Microb. 81, 271–282 (2002).

  29. 29.

    Jørgensen, B. B. & Kasten, S. in Marine Geochemistry (eds. Schulz, H. D. & Zabel, M.) 271–309 (Springer, Berlin, 2006).

  30. 30.

    Mogollón, J. M., Dale, A. W., Fossing, H. & Regnier, P. Timescales for the development of methanogenesis and free gas layers in recently-deposited sediments of Arkona Basin (Baltic Sea). Biogeosciences 9, 1915–1933 (2012).

  31. 31.

    Jørgensen, B. B., Weber, A. & Zopfi, J. Sulfate reduction and anaerobic methane oxidation in Black Sea sediments. Deep Sea Res. Part I Oceanogr. Res. Pap. 48, 2097–2120 (2001).

  32. 32.

    Komada, T. et al. Organic matter cycling across the sulfate-methane transition zone of the Santa Barbara Basin, California Borderland. Geochim. Cosmochim. Acta 176, 259–278 (2016).

  33. 33.

    Jørgensen, B. B. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. II. Calculations from mathematical models. Geomicrobiol. J. 1, 29–51 (1978).

  34. 34.

    Beulig, F., Røy, H., Glombitza, C. & Jørgensen, B. B. Control on rate and pathway of anaerobic organic carbon degradation in the seabed. Proc. Natl Acad. Sci. USA 115, 367–372 (2018).

  35. 35.

    Sivan, O., Antler, G., Turchyn, A. V., Marlow, J. J. & Orphan, V. J. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps. Proc. Natl Acad. Sci. USA 111, 4139–4147 (2014).

  36. 36.

    Holmkvist, L., Ferdelman, T. G. & Jørgensen, B. B. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim. Cosmochim. Acta 75, 3581–3599 (2011).

  37. 37.

    Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Glob. Biogeochem. Cycles 21, GB4006 (2007).

  38. 38.

    Wallmann, K. et al. The global inventory of methane hydrate in marine sediments: a theoretical approach. Energies 5, 2449–2498 (2012).

  39. 39.

    Muller-Karger, F. E. et al. The importance of continental margins in the global carbon cycle. Geophys. Res. Lett. 32, L01602 (2005).

  40. 40.

    Riedinger, N. et al. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology 12, 172–181 (2014).

  41. 41.

    Egger, M. et al. Iron oxide reduction in methane-rich deep Baltic Sea sediments. Geochim. Cosmochim. Acta 207, 256–276 (2017).

  42. 42.

    März, C., Hoffmann, J., Bleil, U., de Lange, G. J. & Kasten, S. Diagenetic changes of magnetic and geochemical signals by anaerobic methane oxidation in sediments of the Zambezi deep-sea fan (SW Indian Ocean). Mar. Geol. 255, 118–130 (2008).

  43. 43.

    Sapart, C. J. et al. The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis. Biogeosciences 14, 2283–2292 (2017).

  44. 44.

    Best, A. I. et al. Shallow seabed methane gas could pose coastal hazard. Eos 87, 213–220 (2006).

  45. 45.

    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

  46. 46.

    Middelburg, J. J. & Levin, L. A. Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6, 3655–3706 (2009).

  47. 47.

    Rooze, J., Egger, M., Tsandev, I. & Slomp, C. P. Iron-dependent anaerobic oxidation of methane in coastal surface sediments: potential controls and impact. Limnol. Oceanogr. 61, S267–S282 (2016).

  48. 48.

    Soetaert, K., Petzoldt, T. & Meysman, F. J. R. marelac: Tools for Aquatic Sciences. R Package v.2.1.3 (CRAN, 2010).

  49. 49.

    Boudreau, B. P. Diagenetic Models and Their Implementation: Modelling Transport and Reactions in Aquatic Sediments (Springer, Heidelberg, 1997).

  50. 50.

    Burwicz, E. B., Rüpke, L. H. & Wallmann, K. Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction-transport modeling and a novel parameterization of Holocene sedimentation. Geochim. Cosmochim. Acta 75, 4562–4576 (2011).

  51. 51.

    Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C. & D’Hondt, S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc. Natl Acad. Sci. USA 109, 16213–16216 (2012).

Download references


We thank R. N. Glud, F. J. R. Meysman and F.-D. Bockelmann for sharing their sedimentation rate database (data collection at Vrije Universiteit Brussel in the framework of FWO Odysseus project G.0929.08) and several other scientists for providing unpublished geochemical data. This work was funded by the Max Planck Society, by an ERC Advanced Grant to B.B.J. (MICROENERGY, EU 7th FP, grant no. 294200) and by the Danish National Research Foundation (DNRF grant no. 104). Additional support (for J.M.M.) was provided by the Netherlands Earth System Science Centre (NESSC).

Author information

Author notes

    • Matthias Egger

    Present address: The Ocean Cleanup Foundation, Delft, The Netherlands


  1. Center for Geomicrobiology, Department of Biosciences, Aarhus University, Aarhus, Denmark

    • Matthias Egger
    •  & Bo Barker Jørgensen
  2. Boones Pickens School of Geology, Oklahoma State University, Stillwater, OK, USA

    • Natascha Riedinger
  3. Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, The Netherlands

    • José M. Mogollón
  4. Department of Earth Sciences – Geochemistry, Utrecht University, Utrecht, The Netherlands

    • José M. Mogollón


  1. Search for Matthias Egger in:

  2. Search for Natascha Riedinger in:

  3. Search for José M. Mogollón in:

  4. Search for Bo Barker Jørgensen in:


M.E., N.R. and B.B.J. designed research. M.E. performed research. M.E. and N.R. compiled and processed data. M.E. and J. M. M. performed ArcGIS modelling. M.E. wrote the paper with contributions from all co-authors. B.B.J. obtained the funding for this work.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Matthias Egger.

Supplementary information

  1. Supplementary Information

    Supplementary Information

  2. Supplementary Data Set

    Supplementary Data Set

About this article

Publication history