Article | Published:

An updated stress map of the continental United States reveals heterogeneous intraplate stress

Nature Geosciencevolume 11pages433437 (2018) | Download Citation

Abstract

Knowledge of the state of stress in Earth’s crust is key to understanding the forces and processes responsible for earthquakes. Historically, low rates of natural seismicity in the central and eastern United States have complicated efforts to understand intraplate stress, but recent improvements in seismic networks and the spread of human-induced seismicity have greatly improved data coverage. Here, we compile a nationwide stress map based on formal inversions of focal mechanisms that challenges the idea that deformation in continental interiors is driven primarily by broad, uniform stress fields derived from distant plate boundaries. Despite plate-boundary compression, extension dominates roughly half of the continent, and second-order forces related to lithospheric structure appear to control extension directions. We also show that the states of stress in several active eastern United States seismic zones differ significantly from those of surrounding areas and that these anomalies cannot be explained by transient processes, suggesting that earthquakes are focused by persistent, locally derived sources of stress. Such spatially variable intraplate stress appears to justify the current, spatially variable estimates of seismic hazard. Future work to quantify sources of stress, stressing-rate magnitudes and their relationship with strain and earthquake rates could allow prospective mapping of intraplate hazard.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Zoback, M. L. & Zoback, M. D. State of stress in the conterminous United States. J. Geophys. Res. 85, 6113–6156 (1980).

  2. 2.

    Jones, C. H., Unruh, J. R. & Sonder, L. J. The role of gravitational potential energy in active deformation in the southwestern United States. Nature 381, 37–41 (1996).

  3. 3.

    Flesch, L. M., Holt, W. E., Haines, A. J. & Shen-Tu, B. Dynamics of the Pacific–North American plate boundary in the western United States. Science 287, 834–836 (2000).

  4. 4.

    Zoback, M. L. Stress field constraints on intraplate seismicity in eastern North America. J. Geophys. Res. 97, 11761–11782 (1992).

  5. 5.

    Reiter, K. et al. A revised crustal stress orientation database for Canada. Tectonophysics 636, 111–124 (2014).

  6. 6.

    Stein, S. & Liu, M. Long aftershock sequences within continents and implications for earthquake hazard assessment. Nature 462, 87–89 (2009).

  7. 7.

    Ellsworth, W. L. Injection-induced earthquakes. Science 341, 1225942 (2013).

  8. 8.

    Weingarten, M. et al. High-rate injection is associate with the increase in U.S. midcontinent seismicity. Science 348, 1336–1340 (2015).

  9. 9.

    Heidbach et al. World Stress Map Database 2016 (GFZ, 2016); https://doi.org/10.5880/WSM.2016.001

  10. 10.

    England, P., Houseman, G. & Sonder, L. J. Lengthscales for continental deformation in convergent, divergent and strike-slip environments. J. Geophys. Res. 90, 3551–3557 (1985).

  11. 11.

    Silver, P. G. & Holt, W. E. The mantle flow field beneath western North America. Science 295, 1054–1057 (2002).

  12. 12.

    Humphreys, E. D. & Coblentz, D. North American dynamics and western U.S. tectonics. Rev. Geophys. 45, RG3001 (2007).

  13. 13.

    Ghosh, A. & Holt, W. E. Plate motions and stresses from global dynamic models. Science 335, 838–843 (2012).

  14. 14.

    Hurd, O. & Zoback, M. D. Intraplate earthquakes, regional stress, and fault mechanics in the central and eastern U.S. and southeastern Canada. Tectonophysics 581, 182–192 (2012).

  15. 15.

    Lund-Snee, J. E. & Zoback, M. D. State of stress in Texas: implications for induced seismicity. Geophys. Res. Lett. 43, 10208–10214 (2016).

  16. 16.

    Simpson, R. W. Quantifying Anderson’s fault types. J. Geophys. Res. 102, 17909–17919 (1997).

  17. 17.

    Zoback, M. L. & Zoback, M. D. Tectonic stress field of the continental United States. GSA Memoir 172, 523–540 (1989).

  18. 18.

    Gough, D. I., Fordjor, C. K. & Bell, J. S. A stress province boundary and tractions on the North American plate. Nature 305, 619–621 (1983).

  19. 19.

    Becker, T. W. et al. Western US intermountain seismicity caused by changes in upper mantle flow. Nature 524, 458–461 (2015).

  20. 20.

    Hurd, O. & Zoback, M. D. Regional stress orientations and slip compatibility of focal mechanisms in the New Madrid Seismic Zone. Seismol. Res. Lett. 83, 672–679 (2012).

  21. 21.

    Petersen, M.D. et al. Documentation of the 2014 Update of the United States National Seismic Hazard Maps USGS Open File Report 1091 (USGS, 2014).

  22. 22.

    Calais, E. et al. Triggering of New Madrid seismicity by late-Pleistocene erosion. Nature 466, 608–611 (2010).

  23. 23.

    Stein, R. The role of stress transfer in earthquake occurrence. Nature 402, 605–609 (1999).

  24. 24.

    Wesson, R. L. & Boyd, O. S. Stress before and after the 2002 Denali Fault earthquake. Geophys. Res. Lett. 34, L07303 (2007).

  25. 25.

    Mueller, K., Hough, S. E. & Bilham, R. Analysing the 1811–1812 New Madrid earthquakes with recent instrumentally recorded aftershocks. Nature 429, 284–287 (2004).

  26. 26.

    Lowry, A. R. & Pérez-Gussinyé, M. The role of crustal quartz in controlling Cordilleran deformation. Nature 471, 353–357 (2011).

  27. 27.

    Zoback, M. D. & Townend, J. Implications of hydrostatic pore pressures and high crustal strength for the deformation of continental lithosphere. Tectonophysics 336, 19–30 (2001).

  28. 28.

    Sonder, L. J. Effects of density contrasts on the orientation of stresses in the lithosphere: relation to principal stress directions in the Transverse Ranges, California. Tectonics 9, 761–771 (1990).

  29. 29.

    Forte, A. M. et al. Descent of the ancient Farallon slab drives localized mantle flow beneath the New Madrid seismic zone. Geophys. Res. Lett. 34, L04308 (2007).

  30. 30.

    Zoback, M. L. & Richardson, R. M. Stress perturbation associated with the Amazonas and other ancient rifts. J. Geophys. Res. 101, 5459–5475 (1996).

  31. 31.

    Grana, J. P. & Richardson, R. M. Tectonic stress within the New Madrid seismic zone. J. Geophys. Res. 101, 5445–5458 (1996).

  32. 32.

    Levandowski, W., Boyd, O. S. & Ramirez-Guzmán, L. Dense lower crust elevates long-term earthquake rates in the New Madrid seismic zone. Geophys. Res. Lett. 43, 8499–8510 (2016).

  33. 33.

    Biryol, C. B. et al. Relationship between observed upper mantle structure and recent tectonic activity across the southeastern United States. J. Geophys. Res. 121, 3393–3414 (2016).

  34. 34.

    Shen, W. & Ritzwoller, M. H. Crustal and uppermost mantle structure beneath the United States. J. Geophys. Res. 121, 4306–4342 (2016).

  35. 35.

    Graw, J. H., Powell, C. A. & Langston, C. A. Crustal and upper mantle velocity structure in the vicinity of the Eastern Tennessee seismic zone based upon radial P-wave transfer functions. J. Geophys. Res. 120, 243–258 (2015).

  36. 36.

    Cooley, M. T. A New Set of Focal Mechanisms and a Geodynamic Model for the Eastern Tennessee Seismic Zone. MSc thesis, Univ. Memphis (2014).

  37. 37.

    Wallace, R. E. Geometry of shearing stresses and relation to faulting. J. Geol. 59, 118–130 (1951).

  38. 38.

    Bott, M. H. P. The mechanics of oblique-slip faulting. Geol. Mag. 96, 109–117 (1959).

  39. 39.

    Varryčuk, V. Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophys. J. Int. 199, 69–77 (2014).

  40. 40.

    Herrmann, R. B. Moment Tensors for North America (St Louis Univ. accessed 1 January 2018); http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/MECHFIG/mech.html

  41. 41.

    Herrmann, R. B., Malagnini, L. & Munafó, I. Regional moment tensors of the 2009 L’Aquila earthquake sequence. Bull. Seismol. Soc. Am. 101, 975–993 (2011).

  42. 42.

    Wu, Q., Chapman, M. C. & Beale, J. N. The aftershock sequence of the 2011 Mineral, Virginia earthquake: temporal and spatial distribution, focal mechanisms, regional stress, and the role of Coulomb stress transfer. Bull. Seismol. Soc. Am. 105, 2521–2527 (2015).

  43. 43.

    Johnson, G. A., Horton, S. P., Withers, M. & Cox, R. Earthquake focal mechanisms in the New Madrid seismic zone. Seismol. Res. Lett. 85, 257–267 (2014).

  44. 44.

    Walsh, F. R.III & Zoback, M. D. Probabilistic assessment of potential fault slip related to injection-induced earthquakes: application to north-central Oklahoma, USA. Geology 44, 991–994 (2016).

  45. 45.

    Chapman, M. C. et al. A statistical analysis of earthquake focal mechanisms and epicenter locations in the Eastern Tennessee Seismic Zone. Bull. Seismol. Soc. Am. 87, 1522–1536 (1997).

  46. 46.

    Martinez-Garzón, P. J. et al. Sensitivity of stress inversion of focal mechanisms to pore pressure changes. Geophys. Res. Lett. 43, 8441–8450 (2016).

  47. 47.

    Haeussler, P. J. et al. Surface rupture and slip distribution of the Denali and Totschunda faults in the 3 Novermber 2002 M7.9 earthquake, Alaska. Bull. Seismol. Soc. Am. 94, S23–S52 (2004).

  48. 48.

    Hreinsd¢ttir, S. et al. Coseismic deformation of the 2002 Denali fault earthquake: insights from GPS measurements. J. Geophys. Res. 111, B03308 (2006).

  49. 49.

    Chapman, M. C. et al. Modern seismicity and the fault responsible for the 1886 Charleston, South Carolina, earthquake. Bull. Seismol. Soc. Am. 106, 364–372 (2016).

Download references

Acknowledgements

J. Hardebeck, M. Zoback and M. L. Zoback provided helpful comments and discussions during preparation of this manuscript. W.L. was funded by the USGS Mendenhall Postdoctoral Fellowship and Earthquake Hazards Program.

Author information

Author notes

    • Will Levandowski

    Present address: Colorado College, Colorado Springs, CO, USA

Affiliations

  1. USGS, Golden, CO, USA

    • Will Levandowski
    • , Rich Briggs
    • , Oliver Boyd
    •  & Ryan Gold
  2. St Louis University, St Louis, MO, USA

    • Robert B. Herrmann

Authors

  1. Search for Will Levandowski in:

  2. Search for Robert B. Herrmann in:

  3. Search for Rich Briggs in:

  4. Search for Oliver Boyd in:

  5. Search for Ryan Gold in:

Contributions

W.L. managed catalogue compilation, stress inversions, figure generation and manuscript preparation. R.B.H. generated a plurality of the focal mechanisms and aided in the uncertainty analysis for individual data. All authors collaborated on figure generation, drafting and hypothesis testing.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Will Levandowski.

Supplementary information

  1. Supplementary Information

    Supplementary description, figures, tables, and README file

  2. Supplementary Dataset 1

    Focal mechanism database

  3. Supplementary Dataset 2

    Results shown in Fig. 2c

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41561-018-0120-x