Review Article | Published:

Environmental and social footprints of international trade

Nature Geosciencevolume 11pages314321 (2018) | Download Citation

Abstract

Globalization has led to an increasing geospatial separation of production and consumption, and, as a consequence, to an unprecedented displacement of environmental and social impacts through international trade. A large proportion of total global impacts can be associated with trade, and the trend is rising. Advances in global multi-region input-output models have allowed researchers to draw detailed, international supply-chain connections between harmful production in social and environmental hotspots and affluent consumption in global centres of wealth. The general direction of impact displacement is from developed to developing countries—an increase of health impacts in China from air pollution linked to export production for the United States being one prominent example. The relocation of production across countries counteracts national mitigation policies and may negate ostensible achievements in decoupling impacts from economic growth. A comprehensive implementation of the United Nations Sustainable Development Goals therefore requires the inclusion of footprint indicators to avoid loopholes in national sustainability assessments.

  • Subscribe to Nature Geoscience for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    World Trade Statistical Review 2017 (World Trade Organization, 2017); https://www.wto.org/english/res_e/statis_e/wts2017_e/wts17_toc_e.htm

  2. 2.

    Acquaye, A. et al. Measuring the environmental sustainability performance of global supply chains: a multi-regional input-output analysis for carbon, sulphur oxide and water footprints. J. Environ. Manage. 187, 571–585 (2017).

  3. 3.

    Wiedmann, T. in Taking Stock of Industrial Ecology (eds Clift, R. & Druckman A.) 159–180 (Springer International Publishing, New York, 2016).

  4. 4.

    Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117 (2014).

  5. 5.

    Galli, A. et al. Integrating ecological, carbon and water footprint into a “footprint family” of indicators: definition and role in tracking human pressure on the planet. Ecol. Indic. 16, 100–112 (2012).

  6. 6.

    Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117 (2014).

  7. 7.

    Jiang, X. & Green, C. The impact on global greenhouse gas emissions of geographic shifts in global supply chains. Ecol. Econ. 139, 102–114 (2017).

  8. 8.

    Mi, Z. et al. Chinese CO2 emission flows have reversed since the global financial crisis. Nat. Commun. 8, 1712 (2017).

  9. 9.

    Liu, X. et al. Virtual carbon and water flows embodied in international trade: a review on consumption-based analysis. J. Clean. Prod. 146, 20–28 (2017).

  10. 10.

    de Vries, G. J. & Ferrarini, B. What accounts for the growth of carbon dioxide emissions in advanced and emerging economies? The role of consumption, technology and global supply chain participation. Ecol. Econ. 132, 213–223 (2017).

  11. 11.

    Zhao, Y. et al. Identifying the economic and environmental impacts of China’s trade in intermediates within the Asia-Pacific region. J. Clean. Prod. 149, 164–179 (2017).

  12. 12.

    Zhang, Z., Zhu, K. & Hewings, G. J. D. The effects of border-crossing frequencies associated with carbon footprints on border carbon adjustments. Energy Econ. 65, 105–114 (2017).

  13. 13.

    Moran, D. D., Lenzen, M., Kanemoto, K. & Geschke, A. Does ecologically unequal exchange occur? Ecol Econ. 89, 177–186 (2013).

  14. 14.

    Hoekstra, R., Michel, B. & Suh, S. The emission cost of international sourcing: using structural decomposition analysis to calculate the contribution of international sourcing to CO2-emission growth. Econ. Sys. Res. 28, 151–167 (2016).

  15. 15.

    Plank, B., Eisenmenger, N., Schaffartzik, A. & Wiedenhofer, D. International trade drives global resource use: a structural decomposition analysis of raw material consumption from 1990–2010. Environ. Sci. Technol. 52, 4190–4198 (2018).

  16. 16.

    Alsamawi, A., Murray, J., Lenzen, M. & Reyes, R. C. Trade in occupational safety and health: tracing the embodied human and economic harm in labour along the global supply chain. J. Clean. Prod. 147, 187–196 (2017).

  17. 17.

    Xiao, Y. et al. The corruption footprints of nations. J. Ind. Ecol. 22, 68–78 (2018).

  18. 18.

    Simas, M. et al. Correlation between production and consumption-based environmental indicators: the link to affluence and the effect on ranking environmental performance of countries. Ecol. Indic. 76, 317–323 (2017).

  19. 19.

    Wiedmann, T. O. et al. The material footprint of nations. Proc. Natl Acad. Sci. USA 112, 6271–6276 (2015).

  20. 20.

    Wood, R. et al. Growth in environmental footprints and environmental impacts embodied in trade: resource efficiency indicators from EXIOBASE3. J. Ind. Ecol. https://doi.org/10.1111/jiec.12735 (2018).

  21. 21.

    O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).

  22. 22.

    Tian, X., Geng, Y., Sarkis, J. & Zhong, S. Trends and features of embodied flows associated with international trade based on bibliometric analysis. Resour. Conserv. Recycl. 131, 148–157 (2018).

  23. 23.

    Tukker, A., Giljum, S. & Wood, R. Recent progress in assessment of resource efficiency and environmental impacts embodied in trade: an introduction to this special issue. J. Ind. Ecol. https://doi.org/10.1111/jiec.12736 (2018).

  24. 24.

    Weinzettel, J. et al. Affluence drives the global displacement of land use. Global Environ. Change 23, 433–438 (2013).

  25. 25.

    Peters, G. P., Davis, S. J. & Andrew, R. A synthesis of carbon in international trade. Biogeosciences 9, 3247–3276 (2012).

  26. 26.

    Giljum, S., Bruckner, M. & Martinez, A. Material footprint assessment in a global input-output framework. J. Ind. Ecol. 19, 792–804 (2015).

  27. 27.

    Hertwich, E. G. & Peters, G. P. Carbon footprint of nations: a global, trade-linked analysis. Environ. Sci. Technol. 43, 6414–6420 (2009).

  28. 28.

    Peters, G. P. & Hertwich, E. G. CO2 embodied in international trade with implications for global climate policy. Environ. Sci. Technol. 42, 1401–1407 (2008).

  29. 29.

    Font Vivanco, D., Wang, R. & Hertwich, E. Nexus strength: a novel metric for assessing the global resource nexus. J. Ind. Ecol. https://doi.org/10.1111/jiec.12704 (2017).

  30. 30.

    Holland, R. A. et al. Global impacts of energy demand on the freshwater resources of nations. Proc. Natl Acad. Sci. USA 112, E6707–E6716 (2015).

  31. 31.

    Chen, B. et al. Global land-water nexus: agricultural land and freshwater use embodied in worldwide supply chains. Sci. Total Environ. 613–614, 931–943 (2018).

  32. 32.

    Steinmann, Z. J. N. et al. Resource footprints are good proxies of environmental damage. Environ. Sci. Technol. 51, 6360–6366 (2017).

  33. 33.

    Oita, A. et al. Substantial nitrogen pollution embedded in international trade. Nat. Geosci. 9, 111–115 (2016).

  34. 34.

    Zhang, Q. et al. Transboundary health impacts of transported global air pollution and international trade. Nature 543, 705–709 (2017).

  35. 35.

    Lin, J. et al. China’s international trade and air pollution in the United States. Proc. Natl Acad. Sci. USA 111, 1736–1741 (2014).

  36. 36.

    Faturay, F., Lenzen, M. & Nugraha, K. A new sub-national multi-region input–output database for Indonesia. Econ. Sys. Res. 29, 234–251 (2017).

  37. 37.

    Lenzen, M. et al. New multi-regional input–output databases for Australia – enabling timely and flexible regional analysis. Econ. Sys. Res. 29, 275–295 (2017).

  38. 38.

    Bachmann, C., Roorda, M. J. & Kennedy, C. Developing a multi-scale multi-region input-output model. Econ. Sys. Res. 27, 172–193 (2015).

  39. 39.

    Wang, Y., Geschke, A. & Lenzen, M. Constructing a time series of nested multiregion input–output tables. Int. Reg. Sci. Rev. 40, 476–499 (2017).

  40. 40.

    Wenz, L. et al. Regional and sectoral disaggregation of multi-regional input-output tables - a flexible algorithm. Econ. Sys. Res. 27, 194–212 (2015).

  41. 41.

    Geschke, A. & Hadjikakou, M. Virtual laboratories and MRIO analysis – an introduction. Econ. Sys. Res. 29, 143–157 (2017).

  42. 42.

    Lenzen, M. et al. Compiling and using input–output frameworks through collaborative virtual laboratories. Sci. Total Environ. 485–486, 241–251 (2014).

  43. 43.

    Lenzen, M. et al. The global MRIO Lab – charting the world economy. Econ. Sys. Res. 29, 158–186 (2017).

  44. 44.

    Kanemoto, K., Moran, D., Lenzen, M. & Geschke, A. International trade undermines national emission reduction targets: new evidence from air pollution. Global Environ. Change 24, 52–59 (2014).

  45. 45.

    Moran, D. & Kanemoto, K. Tracing global supply chains to air pollution hotspots. Environ. Res. Lett. 11, 094017 (2016).

  46. 46.

    Kanemoto, K., Moran, D. & Hertwich, E. G. Mapping the carbon footprint of nations. Environ. Sci. Technol. 50, 10512–10517 (2016).

  47. 47.

    Meng, J. et al. Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption. Proc. R. Soc. A 472, 2195 (2016).

  48. 48.

    Liang, S. et al. Consumption-based human health impacts of primary PM2.5: the hidden burden of international trade. J. Clean. Prod. 167, 133–139 (2017).

  49. 49.

    Xiao, Y., Murray, J. & Lenzen, M. International trade linked with disease burden from airborne particulate pollution. Resour. Conserv. Recycl. 129, 1–11 (2018).

  50. 50.

    Takahashi, K. et al. Production-based emissions, consumption-based emissions and consumption-based health impacts of PM2.5 carbonaceous aerosols in Asia. Atmos. Environ. 97, 406–415 (2014).

  51. 51.

    Jiang, X. et al. Revealing the hidden health costs embodied in Chinese exports. Environ. Sci. Technol. 49, 4381–4388 (2015).

  52. 52.

    Lin, J. et al. Global climate forcing of aerosols embodied in international trade. Nat. Geosci. 9, 790–794 (2016).

  53. 53.

    Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES, 2017); https://www.cites.org/eng/disc/text.php

  54. 54.

    Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).

  55. 55.

    Chaudhary, A. & Brooks, T. M. National consumption and global trade impacts on biodiversity. World Dev. https://doi.org/10.1016/j.worlddev.2017.10.012 (2017).

  56. 56.

    Wilting, H. C. et al. Quantifying biodiversity losses due to human consumption: a global-scale footprint analysis. Environ. Sci. Technol. 51, 3298–3306 (2017).

  57. 57.

    Marques, A. et al. How to quantify biodiversity footprints of consumption? A review of multi-regional input–output analysis and life cycle assessment. Curr. Opin. Environ. Sust. 29, 75–81 (2017).

  58. 58.

    Verones, F. et al. Resource footprints and their ecosystem consequences. Sci. Rep. 7, 40743 (2017).

  59. 59.

    Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 0023 (2017).

  60. 60.

    Ewing, B. R. et al. Integrating ecological and water footprint accounting in a multi-regional input–output framework. Ecol. Indic. 23, 1–8 (2012).

  61. 61.

    Yu, Y., Feng, K. & Hubacek, K. Tele-connecting local consumption to global land use. Global Environ. Change 23, 1178–1186 (2013).

  62. 62.

    Font Vivanco, D., Sprecher, B. & Hertwich, E. Scarcity-weighted global land and metal footprints. Ecol. Indic. 83, 323–327 (2017).

  63. 63.

    Wang, R., Hertwich, E. & Zimmerman, J. B. Virtual water flows uphill toward money. Environ. Sci. Technol. 50, 12320–12330 (2016).

  64. 64.

    Chen, Z.-M. & Chen, G. Q. Virtual water accounting for the globalized world economy: national water footprint and international virtual water trade. Ecol. Indic. 28, 142–149 (2013).

  65. 65.

    Arto, I., Andreoni, V. & Rueda-Cantuche, J. M. Global use of water resources: a multiregional analysis of water use, water footprint and water trade balance. Water Resour. Econom. 15, 1–14 (2016).

  66. 66.

    Dalin, C. et al. Evolution of the global virtual water trade network. Proc. Natl Acad. Sci. USA 109, 5989–5994 (2012).

  67. 67.

    Chenoweth, J., Hadjikakou, M. & Zoumides, C. Quantifying the human impact on water resources: a critical review of the water footprint concept. Hydrol. Earth Syst. Sci. 18, 2325–2342 (2014).

  68. 68.

    Wichelns, D. Virtual water and water footprints do not provide helpful insight regarding international trade or water scarcity. Ecol. Indic. 52, 277–283 (2015).

  69. 69.

    Lenzen, M. et al. International trade of scarce water. Ecol. Econ. 94, 78–85 (2013).

  70. 70.

    Lutter, S. et al. Spatially explicit assessment of water embodied in European trade: a product-level multi-regional input-output analysis. Global Environ. Change 38, 171–182 (2016).

  71. 71.

    Wan, L., Cai, W., Jiang, Y. & Wang, C. Impacts on quality-induced water scarcity: drivers of nitrogen-related water pollution transfer under globalization from 1995 to 2009. Environ. Res. Lett. 11, 074017 (2016).

  72. 72.

    Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

  73. 73.

    Chen, B. et al. Global energy flows embodied in international trade: a combination of environmentally extended input–output analysis and complex network analysis. Appl. Energ. 210, 98–107 (2018).

  74. 74.

    Wu, X. F. & Chen, G. Q. Global primary energy use associated with production, consumption and international trade. Energy Policy 111, 85–94 (2017).

  75. 75.

    Zheng, X. et al. High sensitivity of metal footprint to national GDP in part explained by capital formation. Nat. Geosci. 11, 269–273 (2018).

  76. 76.

    Fang, K. & Heijungs, R. Investigating the inventory and characterization aspects of footprinting methods: lessons for the classification and integration of footprints. J. Clean. Prod. 108, 1028–1036 (2015).

  77. 77.

    Simas, M., Wood, R. & Hertwich, E. Labor embodied in trade - the role of labor and energy productivity and implications for greenhouse gas emissions. J. Ind. Ecol. 19, 343–356 (2015).

  78. 78.

    Simas, M. et al. The “bad labor” footprint: quantifying the social impacts of globalization. Sustainability 6, 7514–7540 (2014).

  79. 79.

    Alsamawi, A., Murray, J. & Lenzen, M. The employment footprints of nations: uncovering master-servant relationships. J. Ind. Ecol. 18, 59–70 (2014).

  80. 80.

    Alsamawi, A. et al. The inequality footprints of nations: a novel approach to quantitative accounting of income inequality. PLoS ONE 9, e110881 (2014).

  81. 81.

    Gómez-Paredes, J., Yamasue, E., Okumura, H. & Ishihara, K. N. The labour footprint: a framework to assess labour in a complex economy. Econ. Sys. Res. 27, 415–439 (2015).

  82. 82.

    Gómez-Paredes, J. et al. Consuming childhoods: an assessment of child labor’s role in indian production and global consumption. J. Ind. Ecol. 20, 611–622 (2016).

  83. 83.

    Xiao, Y. et al. How social footprints of nations can assist in achieving the sustainable development goals. Ecol. Econ. 135, 55–65 (2017).

  84. 84.

    Andrew, R. M., Davis, S. J. & Peters, G. P. Climate policy and dependence on traded carbon. Environ. Res. Lett. 8, 034011 (2013).

  85. 85.

    Bringezu, S. et al. Multi-scale governance of sustainable natural resource use—challenges and opportunities for monitoring and institutional development at the national and global level. Sustainability 8, 778 (2016).

  86. 86.

    IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  87. 87.

    Afionis, S. et al. Consumption-based carbon accounting: does it have a future? Wiley Interdiscip. Rev. Clim. Change 8, e438 (2017).

  88. 88.

    Barrett, J. et al. Consumption-based GHG emission accounting: a UK case study. Climate Policy 13, 451–470 (2013).

  89. 89.

    Grasso, M. The political feasibility of consumption-based carbon accounting. New Political Econ. 21, 401–413 (2016).

  90. 90.

    Jakob, M. & Marschinski, R. Interpreting trade-related CO2 emission transfers. Nat. Clim. Change 3, 19–23 (2013).

  91. 91.

    Foran, B., Lenzen, M., Dey, C. & Bilek, M. Integrating sustainable chain management with triple bottom line reporting. Ecol. Econ. 52, 143–157 (2005).

  92. 92.

    Giljum, S. et al. Identifying priority areas for European resource policies: a MRIO-based material footprint assessment. J. Econ. Struct. 5, 17 (2016).

  93. 93.

    Wiebe, K. S. & Yamano, N. Estimating CO 2 Emissions Embodied in Final Demand and Trade Using the OECD ICIO 2015 (OECD, 2016).

  94. 94.

    Gilijum, S. et al. Empirical Assessment of the OECD Inter-Country Input-Output Database to Calculate Demand-Based Material Flows (OECD, Working Party on Environmental Information, 2017).

  95. 95.

    Natural Resources: Resource Efficiency Indicators (UNEP, Environment Live, accessed 1 January 2018); http://www.uneplive.org/material

  96. 96.

    SDG Indicators: Global Indicator Framework for the Sustainable Development Goals and Targets of the 2030 Agenda for Sustainable Development (UNSD, 2018); https://unstats.un.org/sdgs/indicators/indicators-list/

  97. 97.

    Wiedmann, T. & Barrett, J. Policy-relevant applications of environmentally extended MRIO databases - experiences from the UK. Econ. Sys. Res. 25, 143–156 (2013).

  98. 98.

    Gros, D. & Egenhofer, C. The case for taxing carbon at the border. Climate Policy 11, 1262–1268 (2011).

  99. 99.

    Sakai, M. & Barrett, J. Border carbon adjustments: addressing emissions embodied in trade. Energy Policy 92, 102–110 (2016).

  100. 100.

    Steininger, K. et al. Justice and cost effectiveness of consumption-based versus production-based approaches in the case of unilateral climate policies. Global Environ. Change 24, 75–87 (2014).

  101. 101.

    Barrett, J. & Scott, K. Link between climate change mitigation and resource efficiency: a UK case study. Global Environ. Change 22, 299–307 (2012).

  102. 102.

    Steffen, W. et al. Sustainability. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

  103. 103.

    Raworth, K. Doughnut Economics: Seven Ways to Think Like a 21st Century Economist (Chelsea Green Publishing, Vermont, 2017).

  104. 104.

    Allen, C., Metternicht, G. & Wiedmann, T. National pathways to the Sustainable Development Goals (SDGs): a comparative review of scenario modelling tools. Environ. Sci. Policy 66, 199–207 (2016).

  105. 105.

    International Trade in Resources: A Biophysical Assessment (UNEP, 2015).

  106. 106.

    Tukker, A. et al. Towards robust, authoritative assessments of environmental impacts embodied in trade: current state and recommendations. J. Ind. Ecol. https://doi.org/10.1111/jiec.12716 (2018).

  107. 107.

    Dalin, C. & Rodríguez-Iturbe, I. Environmental impacts of food trade via resource use and greenhouse gas emissions. Environ. Res. Lett. 11, 035012 (2016).

  108. 108.

    Wiedmann, T. et al. Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input-output analysis. Ecol. Econ. 70, 1937–1945 (2011).

  109. 109.

    Södersten, C.-J., Wood, R. & Hertwich, E. G. Environmental impacts of capital formation. J. Ind. Ecol. 22, 55–67 (2018).

  110. 110.

    Pauliuk, S., Arvesen, A., Stadler, K. & Hertwich, E. G. Industrial ecology in integrated assessment models. Nat. Clim. Change 7, 13–20 (2017).

  111. 111.

    Liu, J. et al. Systems integration for global sustainability. Science 347, 1258832 (2015).

  112. 112.

    Cherniwchan, J., Copeland, B. R. & Taylor, M. S. Trade and the environment: new methods, measurements, and results. Annu. Rev. Econ. 9, 59–85 (2017).

  113. 113.

    Pfister, S., Hadjkakou, M. & Wiedmann, T. How Distant are Consumers from their Environmental Footprints and Economic benefits? (9th Biennial Conference of the International Society for Industrial Ecology: Science in Support of Sustainable and Resilient Communities, 2017).

  114. 114.

    Abd Rahman, M. D. et al. A flexible adaptation of the WIOD database in a virtual laboratory. Econ. Sys Res. 29, 187–208 (2017).

  115. 115.

    Leontief, W. Quantitative input and output relations in the economic system of the United States. Rev. Econ. Stat. 18, 105–125 (1936).

  116. 116.

    Toward the UN Handbook on Supply and Use Tables and Input–Output Tables (UNSD, 2017); https://unstats.un.org/unsd/envaccounting/londongroup/meeting21/3_unsd.pdf

  117. 117.

    Tukker, A. & Dietzenbacher, E. Global multiregional input–output frameworks: an introduction and outlook. Econ. Sys. Res. 25, 1–19 (2013).

  118. 118.

    Inomata, S. & Owen, A. Comparative evaluation of MRIO databases. Econ. Sys. Res. 26, 239–244 (2014).

  119. 119.

    Moran, D. & Wood, R. Convergence between the Eora, WIOD, EXIOBASE and Open-EU’s consumption-based carbon accounts. Econ. Sys. Res. 26, 245–261 (2014).

  120. 120.

    Owen, A. et al. A structural decomposition approach to comparing MRIO databases. Econ. Sys. Res. 26, 262–283 (2014).

  121. 121.

    Lenzen, M., Wood, R. & Wiedmann, T. Uncertainty analysis for multi-region input–output models – a case study of the UK’s carbon footprint. Econ. Sys. Res. 22, 43–63 (2010).

  122. 122.

    Leontief, W. & Duchin, F. The Future Impact of Automation on Workers (Oxford Univ. Press, New York, 1986).

  123. 123.

    Leontief, W. Environmental repercussions and the economic structure: an input–output approach. Rev. Econ. Stat. 52, 262–271 (1970).

  124. 124.

    Leontief, W. Structure of the world economy: outline of a simple input–output formulation. Am. Econ. Rev. 64, 823–834 (1974).

  125. 125.

    Leontief, W. (ed.) in Input Output Economics 418–428 (Oxford Univ. Press, New York, 1986).

  126. 126.

    Bullard, C. W. & Herendeen, R. A. The energy cost of goods and services. Energy Policy 3, 268–278 (1975).

  127. 127.

    Costanza, R. Embodied energy and economic valuation. Science 210, 1219–1224 (1980).

  128. 128.

    Proops, J. L. R., Faber, M. & Wagenhals, G. Reducing CO 2 Emissions: A Comparative Input-Output-Study for Germany and the UK (Springer-Verlag, Berlin, 1993).

  129. 129.

    Heijungs, R. & Suh, S. The Computational Structure of Life Cycle Assessment (Kluwer Academic Publishers, Dordrecht, 2002).

  130. 130.

    System of Environmental-Economic Accounting 2012 — Central Framework (UN, EY, FAO, IMF, OECD, World Bank, 2014); http://unstats.un.org/unsd/envaccounting/seeaRev/SEEA_CF_Final_en.pdf

  131. 131.

    Rose, A. & Miernyk, W. Input–output analysis: the first fifty years. Econ. Sys. Res. 1, 229–272 (1989).

  132. 132.

    Dietzenbacher, E. et al. Input-output analysis: the next 25 years. Econ. Sys. Res. 25, 369–389 (2013).

Download references

Acknowledgements

We thank J. Barrett, University of Leeds, for advice on the policy relevance of consumption-based accounting. Data, help and advice from S. Pfister, ETH Zurich, Switzerland, for preparing the footprint distances maps is greatly acknowledged.

Author information

Affiliations

  1. Sustainability Assessment Program, School of Civil and Environmental Engineering, UNSW Sydney, Sydney, New South Wales, Australia

    • Thomas Wiedmann
  2. ISA, School of Physics A28, The University of Sydney, Sydney, New South Wales, Australia

    • Thomas Wiedmann
    •  & Manfred Lenzen

Authors

  1. Search for Thomas Wiedmann in:

  2. Search for Manfred Lenzen in:

Contributions

T.W. and M.L. wrote the paper. T.W. analysed data to create Figs. 13.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Thomas Wiedmann.

Supplementary information

  1. Supplementary Information

    Supplementary Table, Supplementary References.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41561-018-0113-9

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.