Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean


The interplay between ocean circulation and biological productivity affects atmospheric CO2 levels and marine oxygen concentrations. During the warming of the last deglaciation, the North Pacific experienced a peak in productivity and widespread hypoxia, with changes in circulation, iron supply and light limitation all proposed as potential drivers. Here we use the boron-isotope composition of planktic foraminifera from a sediment core in the western North Pacific to reconstruct pH and dissolved CO2 concentrations from 24,000 to 8,000 years ago. We find that the productivity peak during the Bølling–Allerød warm interval, 14,700 to 12,900 years ago, was associated with a decrease in near-surface pH and an increase in pCO2, and must therefore have been driven by increased supply of nutrient- and CO2-rich waters. In a climate model ensemble (PMIP3), the presence of large ice sheets over North America results in high rates of wind-driven upwelling within the subpolar North Pacific. We suggest that this process, combined with collapse of North Pacific Intermediate Water formation at the onset of the Bølling–Allerød, led to high rates of upwelling of water rich in nutrients and CO2, and supported the peak in productivity. The respiration of this organic matter, along with poor ventilation, probably caused the regional hypoxia. We suggest that CO2 outgassing from the North Pacific helped to maintain high atmospheric CO2 concentrations during the Bølling–Allerød and contributed to the deglacial CO2 rise.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: CO2 and nutrients in the modern subpolar North Pacific.
Fig. 2: Deglacial changes in the biogeochemistry of the subpolar North Pacific.
Fig. 3: Deglacial temperature, pCO2 and NPIW formation.
Fig. 4: Wind stress curl in the glacial North Pacific.


  1. 1.

    Toggweiler, J. R. Variation of atmospheric CO2 by ventilation of the ocean’s deepest water. Paleoceanography 14, 571–588 (1999).

    Article  Google Scholar 

  2. 2.

    Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010).

    Article  Google Scholar 

  3. 3.

    Jaccard, S. L. & Galbraith, E. D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nat. Geosci. 5, 151–156 (2011).

    Article  Google Scholar 

  4. 4.

    Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616–619 (2014).

    Article  Google Scholar 

  5. 5.

    Keigwin, L., Jones, G. A. & Froelich, P. N. A 15,000 year paleoenvironmental record from Meiji Seamount, far northwestern Pacific. Earth Planet. Sci. Lett. 111, 425–440 (1992).

    Article  Google Scholar 

  6. 6.

    Kohfeld, K. E. & Chase, Z. Controls on deglacial changes in biogenic fluxes in the North Pacific Ocean. Quat. Sci. Rev. 30, 3350–3363 (2011).

    Article  Google Scholar 

  7. 7.

    Jaccard, S. L. et al. Glacial/interglacial changes in subarctic North Pacific stratification. Science 308, 1003–1006 (2005).

    Article  Google Scholar 

  8. 8.

    Jaccard, S. L., Galbraith, E. D., Sigman, D. M. & Haug, G. H. A pervasive link between Antarctic ice core and subarctic Pacific sediment records over the past 800kyrs. Quat. Sci. Rev. 29, 206–212 (2010).

    Article  Google Scholar 

  9. 9.

    Crusius, J., Pedersen, T. F., Kienast, S., Keigwin, L. & Labeyrie, L. Influence of northwest Pacific productivity on North Pacific Intermediate Water oxygen concentrations during the Bølling–Ållerød interval (14.7–12.9 ka). Geology 32, 633–636 (2004).

    Article  Google Scholar 

  10. 10.

    Behl, R. J. & Kennett, J. P. Brief interstadial events in the Santa Barbara basin, NE Pacific, during the past 60 kyr. Nature 379, 243–245 (1996).

    Article  Google Scholar 

  11. 11.

    Praetorius, S. K. et al. North Pacific deglacial hypoxic events linked to abrupt ocean warming. Nature 527, 362–366 (2015).

    Article  Google Scholar 

  12. 12.

    Galbraith, E. D. et al. Carbon dioxide release from the North Pacific abyss during the last deglaciation. Nature 449, 890–893 (2007).

    Article  Google Scholar 

  13. 13.

    Mix, A. C. et al. in Mechanisms of Global Climate Change at Millennial Time Scales (eds Clark, P. U. et al.) 127–148 (American Geophysical Union, Washington, DC, 1999).

  14. 14.

    Lam, P. J. et al. Transient stratification as the cause of the North Pacific productivity spike during deglaciation. Nat. Geosci. 6, 622–626 (2013).

    Article  Google Scholar 

  15. 15.

    Key, R. M. et al. Global Ocean Data Analysis Project Version 2 (GLODAPv2) ORNL/CDIAC-162 (US Department of Energy, 2015);

  16. 16.

    Martínez-Botí, M. A. et al. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation. Nature 518, 219–222 (2015).

    Article  Google Scholar 

  17. 17.

    Ren, H. et al. Glacial‐to‐interglacial changes in nitrate supply and consumption in the subarctic North Pacific from microfossil‐bound N isotopes at two trophic levels. Paleoceanography 30, 1217–1232 (2015).

    Article  Google Scholar 

  18. 18.

    Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Chang. 2, 417–424 (2012).

    Article  Google Scholar 

  19. 19.

    Talley, L. D. Distribution and formation of North Pacific intermediate water. J. Phys. Oceanogr. 23, 517–537 (1993).

    Article  Google Scholar 

  20. 20.

    Keigwin, L. Glacial age hydrography of the far northwest Pacific Ocean. Paleoceanography 13, 323–339 (1998).

    Article  Google Scholar 

  21. 21.

    Max, L. et al. Evidence for enhanced convection of North Pacific Intermediate Water to the low-latitude Pacific under glacial conditions. Paleoceanography 32, 41–55 (2017).

    Article  Google Scholar 

  22. 22.

    Matsumoto, K., Oba, T. & Lynch-Stieglitz, J. Interior hydrography and circulation of the glacial Pacific Ocean. Quat. Sci. Rev. 21, 1693–1704 (2002).

    Article  Google Scholar 

  23. 23.

    Max, L. et al. Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation. Clim. Past. 10, 591–605 (2014).

    Article  Google Scholar 

  24. 24.

    Okazaki, Y. et al. Deepwater formation in the North Pacific during the last glacial termination. Science 329, 200–204 (2010).

    Article  Google Scholar 

  25. 25.

    Rae, J. W. B. et al. Deep water formation in the North Pacific and deglacial CO2 rise. Paleoceanography 29, 645–667 (2014).

    Article  Google Scholar 

  26. 26.

    Cook, M. S. & Keigwin, L. Radiocarbon profiles of the NW Pacific from the LGM and deglaciation: evaluating ventilation metrics and the effect of uncertain surface reservoir ages. Paleoceanography 30, 174–195 (2015).

    Article  Google Scholar 

  27. 27.

    Ullman, D. J., Carlson, A. E., Anslow, F. S., LeGrande, A. N. & Licciardi, J. M. Laurentide ice-sheet instability during the last deglaciation. Nat. Geosci. 8, 534–537 (2015).

    Article  Google Scholar 

  28. 28.

    Serno, S. et al. Comparing dust flux records from the Subarctic North Pacific and Greenland: Implications for atmospheric transport to Greenland and for the application of dust as a chronostraphic tool. Paleoceanography 30, 583–600 (2015).

    Article  Google Scholar 

  29. 29.

    Brunelle, B. G. et al. Glacial/interglacial changes in nutrient supply and stratification in the western subarctic North Pacific since the penultimate glacial maximum. Quat. Sci. Rev. 29, 2579–2590 (2010).

    Article  Google Scholar 

  30. 30.

    Galbraith, E. D. et al. Consistent relationship between global climate and surface nitrate utilization in the western subarctic Pacific throughout the last 500 ka. Paleoceanography 23, PA2212 (2008).

    Article  Google Scholar 

  31. 31.

    Hendy, I. L., Pedersen, T. F., Kennett, J. P. & Tada, R. Intermittent existence of a southern Californian upwelling cell during submillennial climate change of the last 60 kyr. Paleoceanography 19, PA3007 (2004).

    Article  Google Scholar 

  32. 32.

    Deutsch, C., Sigman, D. M., Thunell, R. C., Meckler, A. N. & Haug, G. H. Isotopic constraints on glacial/interglacial changes in the oceanic nitrogen budget. Glob. Biogeochem. Cycles 18, GB4012 (2004).

    Article  Google Scholar 

  33. 33.

    Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323, 1443–1448 (2009).

    Article  Google Scholar 

  34. 34.

    Burke, A. & Robinson, L. F. The Southern Ocean’s role in carbon exchange during the last deglaciation. Science 335, 557–561 (2012).

    Article  Google Scholar 

  35. 35.

    McManus, J. F., Francois, R., Gherardi, J. M. & Keigwin, L. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).

    Article  Google Scholar 

  36. 36.

    Knudson, K. P. & Ravelo, A. C. North Pacific Intermediate Water circulation enhanced by the closure of the Bering Strait. Paleoceanography 30, PA002840 (2015).

    Article  Google Scholar 

  37. 37.

    Mheust, M., Stein, R., Fahl, K., Max, L. & Riethdorf, J.-R. High-resolution IP25-based reconstruction of sea-ice variability in the western North Pacific and Bering Sea during the past 18,000 years. Geo. Mar. Lett. 36, 101–111 (2015).

    Article  Google Scholar 

  38. 38.

    Takahashi, T. et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep. Sea Res. II 56, 554–577 (2009).

    Article  Google Scholar 

  39. 39.

    Boyer, T. P. et al. World Ocean Database 2013. NOAA Atlas NESDIS 72 (eds Leviticus, S. & Mishonov, A.) 209 (NOAA, Silver Spring, 2013)

  40. 40.

    Gebhardt, H. et al. Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V. Paleoceanography 23, PA4212 (2008).

    Article  Google Scholar 

  41. 41.

    Jaccard, S. L. et al. Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool. Earth Planet. Sci. Lett. 277, 156–165 (2009).

    Article  Google Scholar 

  42. 42.

    Barron, J. A., Bukry, D., Dean, W. E., Addison, J. A. & Finney, B. Paleoceanography of the Gulf of Alaska during the past 15,000 years: results from diatoms, silicoflagellates, and geochemistry. Mar. Micro. 72, 176–195 (2009).

    Article  Google Scholar 

  43. 43.

    Kuroyanagi, A., Kawahata, H. & Nishi, H. Seasonal variation in the oxygen isotopic composition of different-sized planktonic foraminifer Neogloboquadrina pachyderma (sinistral) in the northwestern North Pacific and implications for reconstruction of the paleoenvironment. Paleoceanography 26, PA4215 (2011).

    Article  Google Scholar 

  44. 44.

    Sarnthein, M. et al. Mid Holocene origin of the sea-surface salinity low in the subarctic North Pacific. Quat. Sci. Rev. 23, 2089–2099 (2004).

    Article  Google Scholar 

  45. 45.

    Yu, J. et al. Responses of the deep ocean carbonate system to carbon reorganization during the last glacial-interglacial cycle. Quat. Sci. Rev. 76, 39–52 (2013).

    Article  Google Scholar 

  46. 46.

    Sarnthein, M., Schneider, B. & Grootes, P. M. Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean. Clim. Past. 9, 2595–2614 (2013).

    Article  Google Scholar 

  47. 47.

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    Article  Google Scholar 

  48. 48.

    Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W. & Sutherland, S. C. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: a comparative study. Glob. Biogeochem. Cycles 7, 843–878 (1993).

    Article  Google Scholar 

  49. 49.

    Butzin, M., Prange, M. & Lohmann, G. Readjustment of glacial radiocarbon chronologies by self-consistent three-dimensional ocean circulation modeling. Earth Planet. Sci. Lett. 317-318, 177–184 (2012).

    Article  Google Scholar 

  50. 50.

    Kovanen, D. J. & Easterbrook, D. J. Paleodeviations of radiocarbon marine reservoir values for the northeast Pacific. Geology 30, 243–246 (2002).

    Article  Google Scholar 

  51. 51.

    Southon, J. R., Nelson, D. E. & Vogel, J. S. A record of past ocean–atmosphere radiocarbon differences from the northeast Pacific. Paleoceanography 5, 197–206 (1990).

    Article  Google Scholar 

  52. 52.

    Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).

    Google Scholar 

  53. 53.

    Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 4, 8407 (2003).

    Article  Google Scholar 

  54. 54.

    Rae, J. W. B., Foster, G. L., SchmidtD. N.. & ElliottT.. Boron isotopes and B/Ca in benthic foraminifera: proxies for the deep ocean carbonate system. Earth Planet. Sci. Lett. 302, 403–413 (2011).

    Article  Google Scholar 

  55. 55.

    Foster, G. L. Seawater pH, pCO2 and [CO32-] variations in the Caribbean Sea over the last 130 kyr: a boron isotope and B/Ca study of planktic foraminifera. Earth Planet. Sci. Lett. 271, 254–266 (2008).

    Article  Google Scholar 

  56. 56.

    Foster, G. L. et al. Interlaboratory comparison of boron isotope analyses of boric acid, seawater and marine CaCO3 by MC-ICPMS and NTIMS. Chem. Geol. 358, 1–14 (2013).

    Article  Google Scholar 

  57. 57.

    Boyle, E. A. & Keigwin, L. Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: changes in deep ocean circulation and chemical inventories. Earth Planet. Sci. Lett. 76, 135–150 (1985).

    Article  Google Scholar 

  58. 58.

    Elderfield, H. & Ganssen, G. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios. Nature 405, 442–445 (2000).

    Article  Google Scholar 

  59. 59.

    Jonkers, L., Jim‚nez-Amat, P., Mortyn, P. G. & Brummer, G.-J. A. Seasonal Mg/Ca variability of N. pachyderma (s) and G. bulloides: implications for seawater temperature reconstruction. Earth Planet. Sci. Lett. 376, 137–144 (2013).

    Article  Google Scholar 

  60. 60.

    Hönisch, B. et al. The influence of salinity on Mg/Ca in planktic foraminifers - evidence from cultures, core-top sediments and complementary δ18O. Geochim. Cosmochim. Acta 121, 196–213 (2013).

    Article  Google Scholar 

  61. 61.

    Gray, W. R. et al. The effects of temperature, salinity, and the carbonate system on Mg/Ca in Globigerinoides ruber (white): a global sediment trap calibration. Earth Planet. Sci. Lett. 482, 607–620 (2018).

    Article  Google Scholar 

  62. 62.

    Evans, D., Wade, B. S., Henehan, M. J., Erez, J. & Müller, W. Revisiting carbonate chemistry controls on planktic foraminifera Mg/Ca: implications for sea surface temperature and hydrology shifts over the Paleocene–Eocene Thermal Maximum and Eocene–Oligocene transition. Clim. Past. 12, 819–835 (2016).

    Article  Google Scholar 

  63. 63.

    Regenberg, M., Regenberg, A., Garbe-Schönberg, D. & Lea, D. W. Global dissolution effects on planktonic foraminiferal Mg/Ca ratios controlled by the calcite-saturation state of bottom waters. Paleoceanography 29, 127–142 (2014).

    Article  Google Scholar 

  64. 64.

    Yu, J., Thornalley, D. J. R., Rae, J. W. B. & McCave, N. I. Calibration and application of B/Ca, Cd/Ca, and δ11B in Neogloboquadrina pachyderma (sinistral) to constrain CO2 uptake in the subpolar North Atlantic during the last deglaciation. Paleoceanography 28, 237–252 (2013).

    Article  Google Scholar 

  65. 65.

    Henehan, M. J. et al. A new boron isotope-pH calibration for Orbulina universa, with implications for understanding and accounting for ‘vital effects’. Earth Planet. Sci. Lett. 454, 282–292 (2016).

    Article  Google Scholar 

  66. 66.

    Henehan, M. J. et al. Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction. Earth Planet. Sci. Lett. 364, 111–122 (2013).

    Article  Google Scholar 

  67. 67.

    Foster, G. L., Pogge von Strandmann, P. A. E. & Rae, J. W. B. Boron and magnesium isotopic composition of seawater. Geochem. Geophys. Geosyst. 11, Q08015 (2010).

    Article  Google Scholar 

  68. 68.

    Klochko, K., Kaufman, A. J., Yao, W., Byrne, R. H. & Tossell, J. A. Experimental measurement of boron isotope fractionation in seawater. Earth Planet. Sci. Lett. 248, 276–285 (2006).

    Article  Google Scholar 

  69. 69.

    Zeebe, R. E. & Wolf-Gladrow, D. A. CO 2 in Seawater: Equilibrium, Kinetics, Isotopes (Elsevier Oceanography Series, Amsterdam, 2001).

  70. 70.

    Adkins, J. F., McIntyre, K. & Schrag, D. P. The salinity, temperature, and δ18O of the glacial deep ocean. Science 289, 1769–1773 (2002).

    Article  Google Scholar 

  71. 71.

    Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).

    Article  Google Scholar 

  72. 72.

    Edgar, K. M., Anagnostou, E., Pearson, P. N. & Foster, G. L. Assessing the impact of diagenesis on δ11B, δ13C, δ18O, Sr/Ca and B/Ca values in fossil planktic foraminiferal calcite. Geochim. Cosmochim. Acta 166, 189–209 (2015).

    Article  Google Scholar 

  73. 73.

    Hain, M. P., Sigman, D. M. & Haug, G. H. Carbon dioxide effects of Antarctic stratification, North Atlantic Intermediate Water formation, and subantarctic nutrient drawdown during the last ice age: diagnosis and synthesis in a geochemical box model. Glob. Biogeochem. Cycles 24, GB4023 (2010).

    Article  Google Scholar 

  74. 74.

    Gattuso, J.-P. et al. Seacarb: Seawater Carbonate Chemistry with R. R package v.3.1.2 (CRAN, 2017);

  75. 75.

    Millero, F. J. et al. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar. Chem. 100, 80–94 (2006).

    Article  Google Scholar 

  76. 76.

    Dickson, A. G. Standard potential of the reaction: AgCl(s) + 1/2H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990).

    Article  Google Scholar 

  77. 77.

    Dickson, A. G. & Riley, J. P. The estimation of acid dissociation constants in seawater media from potentionmetric titrations with strong base. I. The ionic product of water - Kw. Mar. Chem. 7, 89–99 (1979).

    Article  Google Scholar 

  78. 78.

    Ezat, M. M., Rasmussen, T. L., Honisch, B., Groeneveld, J. & deMenocal, P. Episodic release of CO2 from the high-latitude North Atlantic Ocean during the last 135kyr. Nat. Commun. 8, 14498 (2017).

    Article  Google Scholar 

  79. 79.

    Riethdorf, J.-R., Max, L., Nürnberg, D., Lembke-Jene, L. & Tiedemann, R. Deglacial development of (sub) sea surface temperature and salinity in the subarctic northwest Pacific: implications for upper-ocean stratification. Paleoceanography 28, 91–104 (2013).

    Article  Google Scholar 

  80. 80.

    Seki, O. et al. Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr. Paleoceanography 19, PA1016 (2004).

    Article  Google Scholar 

  81. 81.

    Seki, O. et al. Large changes in seasonal sea ice distribution and productivity in the Sea of Okhotsk during the deglaciations. Geochem. Geophys. Geosyst. 10, Q10007 (2009).

    Article  Google Scholar 

  82. 82.

    Ganeshram, R. S., Pedersen, T. F., Calvert, S. E., McNeill, G. W. & Fontugne, M. R. Glacial-interglacial variability in denitrification in the worldas oceans: Causes and consequences. Paleoceanography 15, 361–376 (2000).

    Article  Google Scholar 

  83. 83.

    Brunelle, B. G. et al. Evidence from diatom-bound nitrogen isotopes for subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes. Paleoceanography 22, PA1215 (2007).

    Article  Google Scholar 

  84. 84.

    Ito, T. & Follows, M. J. Preformed phosphate, soft tissue pump and atmospheric CO2. J. Mar. Res. 63, 813–839 (2005).

    Article  Google Scholar 

  85. 85.

    Talley, L. D. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography 86(1), 80–97 (2013).

    Article  Google Scholar 

  86. 86.

    Peterson, C. D., Lisiecki, L. E. & Stern, J. V. Deglacial whole-ocean δ13C change estimated from 480 benthic foraminiferal records. Paleoceanography 29, 549–563 (2014).

    Article  Google Scholar 

  87. 87.

    Otto-Bliesner, B. L. et al. Climate sensitivity of moderate-and low-resolution versions of CCSM3 to preindustrial forcings. J. Clim. 19, 2567–2583 (2006).

    Article  Google Scholar 

  88. 88.

    Otto-Bliesner, B. L. et al. Last Glacial Maximum and Holocene climate in CCSM3. J. Clim. 19, 2526–2544 (2006).

    Article  Google Scholar 

Download references


We thank M. Sarnthein for providing core material and stimulating discussions, the ‘B-team’ for their accommodation in the National Oceanography Centre Southampton’s laboratories, A. Mortes-Ródenas for assistance with ICP-MS analysis at Cardiff University, and J. Holmes for support throughout the project. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling for the coordination of CMIP and thank the climate modelling groups for producing and making available their model output ( This work was funded by NERC studentship NE/I528185/1 awarded to W.R.G., NERC studentship NE/1492942/1 to B.T., NERC grant NE/N011716/1 awarded to J.W.B.R and A.B., and NERC grant NE/I013377/1 awarded to A.E.S.

Author information




W.R.G. and J.W.B.R. designed the study and wrote the manuscript. W.R.G., J.W.B.R, G.L.F., C.H.L., B.T. and A.E.S. were involved in the generation of the trace element and δ11B data; R.C.J.W. analysed climate model output; all authors contributed to the interpretation and preparation of the final manuscript.

Corresponding author

Correspondence to William R. Gray.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figures and Supplementary Table

Dataset 1

Supplementary Dataset 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gray, W.R., Rae, J.W.B., Wills, R.C.J. et al. Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean. Nature Geosci 11, 340–344 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing